VRIL COMPENDIUM

VOLUME 3

VRIL
LINKAGE

MUUDO
1992

ЕTHERFORCE

VOLUME 3

TABLE OF CONTENTS

COMMENTARY

FORMATIVE RADIANCE
VRIL MOTORS
VRILLIC
IMPRESSION RECORDERS

ENTUNING VRIL

MULTIPLE RATE LOADS
VRIL DIFFRACTORS

ÆTHERFORCE

ÆTHERFORCE

VRIL COMPENDIUM III

VRIL systems display intelligence because VRIL is intelligence. VRIL permeates all systemologies. VRIL is the ground of being. VRIL manifests when human technologies remove artificially applied codes. VRIL is the means through which Divine Presence is communicated. VRII is responsive to needs.

True VRIL potentials fulfill human organismic desires. Systems are VRIL conductive before detrital species are applied to them. VRIL translates participants. VRIL translations sends participants through VRIL worlds.

Prime VRIL access reveals VRIL dendritic matrices. VRIL matrixial junctures reveal VRIL eidetic worlds. VRIL worids inter-relate in hegemonous hierarchies. Physical experience is inertio-referenced. Meaningful experience is VRIL world referenced.

Descriptive examinations of material configurations are inertially referenced. VRIL eidetic world experiences translate participants free of inertial restrictions. VRIL eidetic world consciousuess is inertia-free consciousness. Inertial impedance limits organismic extension in VRIL eidetic worlds. Special material configurations permit prolific organismic conscious extent amid VRIL eidetic worlds.

Related regional hegemonies compose the apparent world. Apparent world infrastructure is limited to VRIL eidetic world terminal distributions. The apparent world is a multi-juncture terminal of innumerably merging VRIL eidetic worlds. This explains the structure and experience of the apparent world. The apparent world exists because of an inertialized space. Inertia is alien and hostile to VRIL expressions. Inertia is rigid space-reference.

Innumerable VRIL threadways intermesh throughout VRIL experiential 'spaces.

VRIL provides free translatory experience. VRIL is self-referencing.

VRIL translatory experience is true organismic experience. Inertial space impels organisms to perceive VRIL juncture in spatially separated distribution. Inertial space is RESISTIVE separation. Inertial patterns maintain fixed form. Inertial patterns hold in spatial form. Inertial patterns can be detrital species-specific. Inertial patterns effect degenerating species of detritus.

VRIL Science differentiates inertial dotritus. Electro-detrital products are differen-
tiated from other neutral forms by the organismic sensations which they produce. Each design produces a discernably different electro-detrital species. VRIL Technology arranges the collimation and directivities of electro-inertial detritus through reliable componentry.

Inertis distorts, impedes, impels, invades, and resists VRIL eidetic world exporience. Inertio-sensory pressures force distorted organismic response. Apparent world experience is inertio-sense pressured. VRIL thread mergings give true sensual experience. VRII nodes fill projected experiential space.

Eidetic contact shatters false perception. Eidetic contact destroys inertio-distorted perceptions of spatial separations. VRIL technology seeks to magnify and refuse interrupted eidetic connectivity.

VRIL projects space. VRIL projected space permeates. VRIL projected space is consciousness. Consciousness and experience is differentiated as specific eidetic worlds.

Thoughts and thought forms may be tracked in their passage through VRIL thread space. Transverse observation of VRIL threads delays eidetic communion. Transverse VRIL observation permits quasi-inertial knowledge of otherwise eidetic transactions. The sensitive may observe the passage of experiential transiations among VRIL junctures across space. Eidetic world projections through materials is spontaneous. Organismic contact or intent is not necessary for spontaneous projections and transactions. VRIL examines itself. Eidetic world projections release inertial effluences through inertial space impacts.

The human organisms needs VRIL eidetic contact. Other worlds feed this apparent world. Eidetic experiences give synaesthesis which contradict the apparent world. Eidetic worlds defy the apparent world in season, time of day, and weather patterns. Eidetic worlds are wondrous, original, pure, and untainted. In them we may see night towns in broad daylight, spring blooming during winter, and bright sunny meadows at midnight. Eidetic worlds defy reason and 5 sensor argument.

Eidetic worlds are contradictions of the inertial space which they defy and dissolve. We may experience translation up into snowy upper spaces, discover watery lakes where houses are founded, and ascend up into galactic frosted blue stars. These are not pro-
jections of consciousness. These are transactions of projected worlds through material contacts. They require no personal force, initiation, or effort

Eidetic worlds preserve and project things lost to this world during specific seasons. We discover flowers in winter. VRIL infra-structure projects vital holisms and experiential space. VRIL eidetic comnectivity permits total participational translation. VRIL space is translatory SUFFUSION. VRIL dissolves, cavitates, cradicates, and translates inertial space into an eidetic "nole" world ... an abyss of dissolutions.

VRIL junctures permit expanded consciousness. VRIL junctures dissolve inertia and permit eidetic translatory revelation. VRIL eidetic worlds illuminate regions from beneath (Corliss). VRIL eidetic worlds manifest anomalously irregardless of apparent world stratifications (C.Fort). VRIL worlds invade the inertio-apparent world with anomalies.

VRIL worlds self-participate and selfinteract. Operators effect VRIL transmutations via contact. VRIL contact prolongs VRIL eidetic world presence along local axes via operators. VRII interpenetrates experiential space. VRIL examination requires direct contact. VRII eidetic is transacted via VRIL threads.

VRIL requires conduits, materials, and proper alignments for its proper utilization. Metal plates through which VRIL transacts become VRIL engraved hieroglyphs of superlative mystery. Human organismic interactions with such designs release revelational experience of highest degree. At the glowing center of the regional VRIL archeforms (crystallographic pyramidals) is found a special black pool of generative VRIL: the exceptional presence desired by each living sentient being. VRIL projects generativity and sustains worlds. VRIL aurae are tufted striations. Specific VRII aurae contain progenerative inflections during specific times. VRIL Science is not mechanistic. VRIL Science is empirical and experiential. VRIL Science discovers experiential meanings through eidetic contacts. VRII Technology designs and amranges experientially derived componentry.

VRIL threads are indivisible portions of their parent eidetic worids. VRIL threads give trans-regional experience. Design-dotermined material configurations give desired VRIL eidetic experience.

VRIL threadways remain in contact with
participating organisms. VRI threads utilize synaptic junctures in human neurology. VRIL experiences require place-visitation. VRIL experience exalt consciousness and virtue.VRIL aurae are innately withdrawn and enfeebled as a result of inertial immersions. The blackness of VRIL presence is seen in the ground also. Black radiance is VRIL striated presence. VRI presence is viscero-eidetic potential. VRII revelations provide short-cuts through which we achieve futural science.

VRIL oidetic messagings direct and rostructure human consciousness into deepest VRII potentials. VRII oidetic consciousness breaks inertial bondage to the 5 -sensory degenerate perceptive mode. Human physiology is not inertially defined, discerned, or operated. Human physiology is not schematically comprehended through the pressures of inertial detritus.

VRIL Light is formative radiance. VRII Light gives eidetic translation among and through VRIL Templates. Eidetic transactions reveal native phenomena utilized by VRIL technology. VRIL technology requires knowledge only of VRIL natively available transactions. VRIL threadways are copiously and densely found in the ground. The ground is our normal VRII reference domain. Organisms largely rely on ground for VRIL ground transactions which engage human consciousuess in necessary eidetic experience.

Examination of the VRIL Template which sustains experiential horizontality reveals intriguing aspects pertinent to VRIL Science and VRIL technology. This VRIL Template generates and sustains the stratified appearance of ground and space. Apparent World is an ordained profusion of visceroeidetic projections. Experience is most potent along specific VRIL Axes which transect districts and regions. VRIL Axes project sensual fullness of experience. Being is infrastructural rudimentary in absence of eidetic projections.

With proper VRIL transactors the mind may be guided into earth beyond inertial limits. Deep subterranean nodes transact with the sensitive. Juncture-interconnections require special mapped knowledge of VRIL node and VRIL juncture distributions. VRIL maps must be extant throughout whole volumes of experiential space.

Viscero-eidetic experience reveals specific experience via specific arrangements. Arrangements release specific experience. VRIL Science is configuration specific science. VRIL projected experience is the unifying radiant space in VRIL Science.

VRIL loads systems with meanings. The very form and disposition of systems be-
come noumenous and enigmatically suggestive. Ideas, metaphors, and strange significations are radiated from VRIL loaded systems. The fluorescence of VRIL loaded systems is eidetic transactivity.

VRIL continuities and holisms are evidenced as chunking of system components. Meanings crystallize in systems. Portions of whole meanings crystallize in specific components. These may be isolated and experientially examined. Separating such components of VRIL dense configurations result in loss of context and meaningful system operation. This is especially apparent in written minerals and metals: where separating single sentences suffices to derange the reader's continuous meaningful transactions.

RECOGNIZE that there are natural Insensate Processes whose activities are not humanly traceable. LEARN that the Insensate and Inactive are vast VRIL fundamental activities which the human organism cannot yet discern.

VRIL dynamic systems appear inert and static to the insensitive beholder. VRIL structures are rediant, noumenous structures of formidable and respectful aspect to VRIL sensitives.

FORMATIVE RADIANCE

Eidetic luminations have been photographed through various sensitive (chemical) processes. Eidetic luminations react with other eidetic transactions to produce fractions of their total light emissions. VRIL interactions permeate and suffuse all detection means. All chemical detection processes are necessarily and primarily eidetic interactions. Such specific processes intercept fractions of the more total display of an eidetic transaction.

VRIL eidetic transactions are notable for their everpresence, permeativity, and suffusive quality. VRIL transactions are detected as eidetic processes. The true intelligence of the universe is experiential: visceral and eidetic intelligence flood all materials. Contacts with matter is contact with the distributed intelligence of VRIL space.

VRIL radiance caused the offices and terminals of telegraphic and telephonic companies to stand stark and glowing with meaningful eidetic potentials. This effect is captured in photographs. Furtive material contacts transact lasting eidetic impressions. Short interrupted contacts deposit eidetic traces which are largely ignored. The universe of matter is an available continual transaction with VRI itself.

Minerals and metals produce eidetic world transactions which penetrate and dissolve the inertial environment. Minerals and
metals expand specific holisms into their immediate sumroundings. Each is distinct.

Material combinations do not oidetically give the simple sum of their eidetic constituents. Eidetic transactions of material combinations surpass the sum of their eidetic parts. Pure VRIL LIGHT is semisensate. Pure VRIL LIGHT is organismically sensed. Pure VRIL LIGHT is the light of eideto- projective worlds. Each eidetoprojective radiance differs in quality and character. Each eideto-projective radiance projects qualities and characteristics of pure worlds into our own world structure.

Baron Karl von Reichenbach studied spontancous illuminations of all minerals and metals in darkness. These excellent studies fell short because they focussed attention only upon detrital luminations of inertial space. They prove the continual VRIL activity which proceeds as an insensate presence through space.

Significant eidetic translations were not mentioned by these researchers. No doubt the free translatory eidetic experiences gained through dark-room observations of minerals and metals provides rich treasuries of knowledge. VRII photographs analogue the metaldependent tone-signatures which have been identified as audio energy (Vassilatos).
P. Dobler photographed VRIL activated inertial phosphorescence in ground. Metallodensifiers were utilized to focus VRIL eidetic projections. VRIL eidetic projectivity is metal-specific. Eidetic intensity dissolves inertial space in white sheath phosphorescence. Auric colorations near radiant eidetic projectors vary considerably. Color photographs of VRIL LIGHT content have not been reported.

VRIL LIGHT is viscero-eidetic. VRIL LIGHT is pure. Auric phosphorescence is composed of two distinct species: whitesheath light of inertial dissolution and pure transactive viscero-eidetic light. Metal transactor plates mounted with special photographic emulsions may be placed upon the ground or buried. Most powerfully illuminated plates are those which employ zinc. Zinc gives strongest white-sheath phosphorescence when ground-buried. The eidetic world of zinc is entirely groundward oriented. Zinc eidetic world is snowy white. Dobler inadvertently transacted with VRIL eidetic worlds through this process.

Inertial white-sheaths surround insensate VRIL threads. Inertial white sheaths accompany the VRIL transaction of lodostone. These effluences are visually recognized as white misty flares and wispy rays near magnetic spaces. White wisps and flares comespond with VRIL irregularities in lodostone crystal. Wispy white flares signal VRIL
surgo-activated cavitations in inertial space at micro-nodes on lodestone surfaces. Magnetic light has been photographed. It is the result of complex VRIL projected cavitations in inertial space. Partial distal-eidetic photographs have been made by certain rosearchers (Drown, DeLaWarrs).

White fibril phosphorescent manifestations are not VRII. Such manifestations of light distort and diffract some quality of the projected eidetic worlds through inertial densification. Eidetic transactions through materio-organismic contact collimate inertial detritus. Inertio-organismic collimations prove dangerous to vital integrity.

White sheaths are dead displays which stimulate specific retinal responses via inertio-pressive effort (Kilner). Inertio-sensory stimulation is degenerate primitive stimulation. The human organismic responses to inertial pressures are primitive sensory displays devoid of eidetic experience. Inertiodetrital displays glow in colorations which are well known. Inertial glowing detritus remain in degenerate sensory realms. These are devoid of meaningfiul potential.

Eidetic experiences are the "aethers, aurae, and atmospheres" of Victorian lore. The darkroom examination of all minerals and metals reveals visceral and eidetic phenomena.

Specific substances may be grouped acconding to their visceral attributes. The exterior surfaces of minerals and metals fluoresce under white light. The "color" of matter is surficial and exists only in white light illuminations. Topological interiors do not display colors. The coloration of surfaces limits our view. Material interiors remain dark. Coloration is meaningless in the dark. Darkroom eidetic transaction is primary and fundamental sensory-experiential.

Darkroom viscero-eidetic transaction gives contrary colorations (Reichenbach). Iron is sensed as sharp black. Zinc is sensed as soft black. Copper is sensed as yellowgreen. Elemental lead and mercury each choke viscero-eidetic transactions to degrees which prevent human experience. Silver produces bright white visceral lights tinged in purple and blue.

Dr.Gustav Le Bon discovered the pervasive and suffusive existence of what he termed "Dark Light". Thick cylindrical ebonite plugs completely filled the beam path of oil lamps to charge matter. Photographs taken after such charging resulted in special and remarkable photographs in total darkness. Dark light was released for days afterward and was capable of illuminated rooms with radiance of this light. Photographs illustrated his claim. Dark light passes through objects and illuminates them. Dark light can be used to
photograph whole room segments from bohind the projecting lamp. Dark light is not infrared light.

DriLe Bon produced numerous photographs without the use of the special projector lamp. All substances spontaneously and mysteriously emit this bright white "Dark" light. Special emulsions are used to photograph what the eye cannot see. Dr.Le Bon captured these phenomenal illuminations on such chemical emulsions. The brightness of Dark Light exceeds that of sunlight. Human sensors do not perceive this extremely powerful radiance unless activated through VRIL eidetic transaction.

VRIL LIGHT is true light. VRIL generates pure light. Inertially produced light is the result of frictive action when VRIL threads impact inertial space. VRIL LIGHT is everywhere. VRIL LIGHT is insensate. Natural human organismic functions deal with viscero-eidetic transactions which seem suppressed in most inertial spaces.

VRIL LIGHT is formative radiance. Apparent world structure is defined and dotermined by VRL meaningful transactions. Apparent world structure is quality devoid in absence of eidetic world transactions. Eidetic transactions flood apparent world structure in holistic qualities. Apparent world structure is terraced, sectional, and boundary distinct. Eidetic places, districts, regions, worlds, domains, and Templates define reality. VRIL experience does not give topographic continuity. VRIL psychotopography is sectional. VRIL sections are eidetic projections. VRIL eidetic projections may be mutually independent. Projective eidetic radiance forms and floods this apparent world structure in qualities.

VRIL LIGHT gives eidetic translation via VRIL Templates. VRIL experience roveals specific organizing permeations. VRIL experience indicates existence of VRIL Space Templates. Sentient experience is Template resonant via specific technological designs. Normal experience transects numerous VRIL Templates in succession.

We must empirically examine natural substances to discover the true foundations of inertial reactivities and visceral attributes. VRIL LIGHT is radiant pure LIGHT. VRIL LIGHT may be organismically intensified by appropriate receptors. VRIL LIGHT radiates from the ground directly. VRIL LIGHT is sharply focussed and active in certain districts. Organismic sensory receptors may give direct experience of VRIL LIGHT. Photographs give inertial by-products of eidetoprojective VRIL LIGHT.

VRIL LIGHT coincides with dowsing currents and visceral ground-lines. VRIL LIGHT coincides in densification with

Lahovsky ring-resonators, Lecher parallelwire assemblies, H -shaped resonators, cavities, fissures and gaps. VRIL LIGHT is eidetically powerful. Specific intense VRIL LIGHT does not interact with inertial space. Semi-sensate interactions cannot reveal correlations of VRIL presence through measuring devices and photographic plates.

Dowsers have long known that the dotection of "substance lines" in any locale is specific. Dowsers were sensing these potentials for centuries with the apparatus of their own organisms: VRIL sensory vision. Dowsers could literally see the subterranean surgings, seething storms, deep rivers, black glowing streams, resounding caverns, whorling springs, subtecranean cataracts, and underground falls.

Many people dream of these VRIL structural realities. The natural appearance of VRIL chamnels, threadways, and causeways (deepest) is envisioned by VRIL sensitives who perceive these as glowing black "subterranean rivers". Mistermed by dowser as "subterranean water channels" each VRIL causeway is exceptionally densified in ground and ground strata.

We recognize the trace of dowsing arts amid the old scientific literature of the Victorian Era. The search for VRIL threadways was often the driving force behind geographic exploration. Those who misapprohended these wonders were often disappointed.

Marvelous rivers of rock-transfusing VRII threadways are still a wonder to behold. Inertialists measured electrical and magnetic detritus where VRIL channels surge. In typical manner these were equated with telluric currents.

There are instances in which spontaneous and anomalous sunny-yellow illuminations suddenly appear near dried organic minerals and metals. These are experienced on cloudy days as warm and anomalous illuminating presence of orange-yellow so-lar-like light at fixed foci above certain districts. Such aerial positions correspond to VRIL aerial nodes. Phosphorescences which appear to emerge from the ground are never uncommon.

The discovery of proper means of roleasing this pure potential will enable wonderful new social consciousness. Stubblefield, Tesla, MacFarland-Moore, and Moray succeeded in achieving varieties of these translations.

Inertial space cavitates and luminesces when focussed VRII penetrates space volumes. The imperfect process of contemporary illumination employs the concentration of inertial condensates in material wires or gaseous spaces. Frictively impacted min-
erals and metals conduct an inferior fraction of VRIL LIGHT in plasma tubes and incandescent lamps. Illumination technology makes minimal use of pure VRIL LIGHT.

Many experimenters have not properily understood the work of Stubblefield and Tesla. What these and other researchers (MacFarland-Moore) realized to some dogree was the essential purity of that which we call "light". I say "purity of light" because true light is a quality and essence: not an effect Those whose designs cause light to manifest through a gradual staging of everdogenerating inertial effects do not understand Light at all.

Stubblefield said that he had "succeoded in taking light from the ground". His demonstrations proved that tremendous amounts of light could be taken from earth directly: and many witnesses repeat their sightings of his cabin grounds "flooded with light all night long". To the careful examiner, the Stubblefield battery cannot possibly generate electrolytic amounts of charge to accomplish this feat. Neither did Mr. Stubblefield have a huge bank of batteries to accomplish this feat. Mr.Stubblefield charged batteries from his ground device.

Visitors to his tract of land were startled by the sheer amount of "white light" released through his apparatus. They were substantially amazed to remember and report them. Firsthand witnesses recounted their tales with sufficient bravado to convince anyone of the real truth: Stubblefield had indeed released the VRIL LIGHT. The release of pure white light was not therefore the result of "electrical gaseous friction".

His ground coils are VRIL terminals. They are not electrolytic cells. The need for "dowsing out" the proper placement of these plugs was a known fact to those who studied the testimonies of his son, Barnard Stubblefield. Dr.Thomas Morgan mentioned statements made to him by Barnard to the effect that the Stubblefield battery was "an electrical plug...not an electrical battery". Mr.Stubblefield insisted that his design be called a "magneto- electric cell...a receiver of earth electrical waves".

Inertialists have a distorted view of energy; believing that work must be performed in order that manifestations be released. They furthermore believe that certain systems do not develop energy but rather exchange work functions. Energy of the kind and order with which Mr.Stubblefield was involved is native energy: densified transactive power in the ground.

VRIL is responsible for the "spook lights" seen in many swamplands and across meadows during the night. Stubblefield had accomplished was realistic channeling of pure

VRIL LIGHT directly into carbon-vacuum arcs. His use of this material composition is significantly alchymycal in nature.

Meanings leave a luminous trace. Visions record on film. Transactions may be captured in appropriate manner. Dr.Ruth Drown mysteriously retrieved intarior anatomical views of the human organism through the use of VRIL LIGHT. VRIL energy and presence cannot measure directly on inertial meters: being experiential energy. Devices partake of experience and meaning. These may only be enjoined through viscero-eidetic contacts.

VRIL sensory awareness (in the aerial and subterranean expanses) permitted the development of both earth and aerial batteries. "Corridors" and "hallways" of underground energy were very real to the early telegraphic and telephonic engineers. Through the aid of their technically gifted helpers frequent dramatic proof that the "old discerning methods" were valid and useful.

Geomantic formations (to which dowsers were sensitive) often did not correspond with geological formations. Nevertheless the dowsing means by which grounds and lines were structured often revealed the presence of anomalously active energies. We have several accounts of telegraph lines whose operation depended solely upon VRI projected power for years.

Certain inventors doscribe what seems to be underground electrical rivers into which grounded wires are deposited (Farmer). It seems likely that the particular spots chosen for the groundplate sites were "dowsed". Telegraph and telephone lines were grounded at each terminal point. Strong signals were exchanged among station operators with very little battery power. Applied currents seemed to be self-magnifying along specific ground routes. Many telegraphic operators had extraordinary eidetic experiences during night service time.

Early telegraphic linesmen were dowsers. Such sensitives were actively employed to determine the proper alignments of lines and buried cable conduits. These individuals laid cable and erected aerial line-guides precisely along VRIL threadways and VRIL channels.

Telegraphers and early telephonists accept the important action of geomantic factors in their systems. The numerous hired "old-timers" were experts at locating "good groundsites" by instinct alone. This artifact of the dowsing arts managed to survive until meters and artificial aids were developed to service the insensitive.

The few old-timers who knew the secret of seeking "good ground" and favorable geomantic tracts of land (for raising or lay-
ing lines) were disappearing. These earthfeatures (of which they were deeply awarc) were often utilized directly in guiding and intensifying the transmission of tolegraphic signals. Road engineers whose work with telography and telephone paid heavy attention to subterranean and subaqueous conduction paths were privy to many secrets of the land. With these few went the mysteries which made the first (anomalous) rediscoveries of VRII.

The importation of trans-Atlantic telographic cables brought with it a powerful noumenous presence in absence of actual coded transfer. This imported noumenous presence was entirely due to the VRIL connectivity achieved between England and North American transfer sites. While many such artificial commections had continuously been established throughout this time period, many humanly-imposed transfers interrupted natural VRIL eidetic transactions among the continents. Of further note is the deranged conditions which certain such cable connections actually brought into existence.

Deepest VRIL causoways can never be approached. These supply experiential structure. The systemological transactivity was enormous. Social activations became VRIL polarized. Aerial lines and buried cable conduits (which conform with underground VRIL channels) are especially powerful as VRIL eidetic transactors.

Telegraph cable and telephone cable resembled VRIL threadways. VRIL naturally entwined and transacted with these line systems. VRIL pre-existent ground surface structures were eventually violated by expanding enterprise. Massive systems assault laid cable conduits across VRIL threadways. Systems and enterprise were eventually guided away from the use of wires entirely.

Nathan Stubblefield proved that VRIL threads were self-organizing and self- articulating.

VRIL threadpaths seek out their recipients in the absence of distinct connective lines. Ground-wedded radionic devices were always the most potent in activity and results (G.W.Starr-White, R.Drown, Hieronymus). Grounded apparatus become enhosted by eidetic ground node attributes. Grounded apparatus become eidetically radiant to all who behold them. Viscero-eidetic transactions regenerate inertified conditions in districts. All minds turn into the eidetic ground nodes of a district. All eidetic imagery focusses upon special such VRIL centres of space distributed consciousness.

Helical copper reveals local eidetic ground nodes. Sweeping districts with such helical forms does not alter eidetic view. Larger circumferences grant greater con-
scious transaction. Opening such coils skywand gives enlarged view of eidetic ground node area skywand.

Notable luminous displays have been reported in the ground, at ground surface, and in the aerial spaces. The lengthy list of such extraondinary VRIL radiances include:
(1) straight-sided auroral pillars from the ground skywand
(2) radiating auroral pillars from the ground skyward
(3) insensate soft ground curtains of spacedescending rainbow light
(4) insensate green curtains surrounding a radio station from space
(5) severe VRII Radiance historically associated with specific local geologies
(6) induced phosphorescence of laboratory chemicals (potassium platinocyanide and quinine disulphate) during a local auroral display
(7) insensate multi-colored kaleidoscopic mists and fogs
(8) black auroral displays from ground to sky during daytime hours
(9) ground radiated pillars of light into space from mountain peaks
(10) VRIL radiant waves sweeping in the ground mass
(11) corridors and sweeping bands of sea radiance definitely not biohminescent in source
(12) sea light waves just above watery surface
(13) bright phosphorescent silvery sea fogs and mists
(14) giant sea phosphorescent wheels
(15) giant sea phosphorescent V-shaped waves
(16) lightning-like flashes in the sea Such displays are commonly reported. Polynesian "TE LAPA" appear as continuous streaks, flashes, and plaques of bright extremely deep underwater radiance. Pacific sea-going natives rely on these VRII Radiant displays for long-distance navigation between and among islands. Night-time navigation is no hindrance for those whose vision enjoins the "TE LAPA". Natives insist this light-form is unlike the surface lights.

Tonally activated "woivres" may be detected and traced across the ground surface by anyone. Woivres are the "waverings" which signal VRII threadways in the ground. Such dendritic veniforms are wondrous. The correspondence of these ground waverings (black-waves) with energies which dowsers envision explains much.

Try singing along the ground. Notice where your attention is drawn each time. Do you find that each note takes a different path? Do you find that specific tones take specific (and consistent) paths? You can map these
tonal paths along any tract of ground. There are lines in which small vocal utterances become magnified. There are lines along which loud vocal utterances are extinguished. There exists a verticillate ground structure which alters the continuous reception of tones and voices.

The American Natives knew these empirical principles. When they listened at knives (placed in the earth) they heard all manner of non-acoustic visceral sounds however distant. Telegraphy made use of these VRIL principles through empirical discovery. The false equation of its components and their function with electrical action has forever tainted the minds of engineers.

Viscero-visual sightings of black imbricated deudrites and white raysheaths reveal the difference between VRIL threadways and loylines. Ground infrastructure is composed of intense VRIL veniforms having specific activity on the incrial spaces which they transpience.

The improper inter-connection of VRII junctures did damage to certain regional experiences. Certain tracts of land grew bleak and stark as a result of the deranged and erroneous connection of several VRIL junctures. VRIL junctures and naturally occurring VRIL nodes must be interconnected (if at all) in specific sequence.

Lacking the sensitivity which native American Indians displayed, engineers pursued and imposed their self-willed construction operations among distant regions. No regand for the danger which improper VRIL juncture connections poses led many intuitively gifted individuals to seek other means of communications.

VRIL MOTORS

The earth is a vast VRIL SYSTEM. Motor actions emerge when VRIL transactivities reach special projective degrees. Viscero-eidetic transactions release motive actions in certain circumstances.

Unutterable depths contain vast galleries of special minerals and metals whose presence is never known at the surface. These are quasi-metaphysical minerals and metals which visionaries experience through VRIL thread contacts. In these episodes of experience the visionary is completely interfused with these minerals and metals and "lnows" their attributes. Such experience permits identification of surface matter in which similar qualities thread be sensed.

The search for "rare earths" is the special realm of the visionary. Envisioning these locations is a purely eidetic function. Eidetic transactivity gives true communion. Eidetic transactions of surpassing degree give true
and total translation. VRIL generates and sustains metal and mineral crystals. All VRIL generated worlds are VRIL projections. Each geo-region is VRIL projected. We discern the VRIL nature of a geo-rogion when observing the natural forms which appear. Most evident are those permeating forms which appear naturally, historically, and culturally in a region or district.

Local topography, geology, flora, fauna, and weather characteristics tell the VRIL nature of the region. Deeper examinations reveal the psychotopography of the region: the mood, archeform, tone, sense, and theme of a region. VRIL nature determines these more fundamental characteristics and inflections from which all material forms and aggregates are derived. Closer examination proves that cultural trends of art, music, architecture, and literary styles, are VRIL projected.

VRII, threads out into space, arcs into the ground, and wriggles through the local subterranean depths. VRIL resonantly translinks region with region. VRIL makes bilocational experiences possible. VRIL is the means through which the dream technology and dream culture is being realized. Communing with VRII brings expanded consciousness and ability. Proper communion in VRIL channelry is direct eidetic experience. VRIL eidetic commumications is true communication. Ancient VRIL systems conducted the enlivening energy of eidetic world experiences.

Eidetic correspondence is noted among materials and separated contactees. Lodestones were eidetically engaged among communicants who knew their secrets.

Correspondence is the mystical secret which unlocks the doorways to all forgotten lore. Without eidetic experience there can be no alchymy. Metal and mineral crystals were precisely cut and pieces were dispersed among travellers. Each remained in eidetic communication with the others through VRIL sensory experience. These results may be replicated; requiring sensitive skill toward the unravelling of their special runic language.

The use of the poised compass needle for demonstrating the existence of VRI was never totally appreciated by those who worked with them. Magnetic needles are true VRIL detectors. These are capable of entuning special eidetic transactions through pondermotive effects in inertial space. Sharpened perception of tunneled eidetic vision into world-projecting realms are received through special contact with them. Magnets require vocal utterance for the activation of their eidetic transactivities.

Technological departures from the an-
cient knowledge of eidetic communications led to progressive inertialization and dogencrate technologies. Telegraphic systems became progressively more inertial through reliance on code and artificial applications of inertial impulse.

Early telegraphs reveal the inertial tendency albeit rare and mystifying. Penduli and ponder-motive impulsers gave mere physical impulse for coded transfer of signal. VRIL transactions can move penduli, vanes, and motors (Bain, Stubblefield, Hendershot). VRIL energies were utilized in influence motors with success throughout the 17th and 18th Century. These devices employed VRIL correspondence to achieve remarkable distant communications. In these designs we find the appliances of dowsing and geomantic arts re-menging in technological garb.

Pendulum telegraphs of various forms were designed and successfully operated throughout this time period until the middle 19th Century. Numerous testimonies affirm their true operation. Such designs cannot operate through electrical means.

Several remarkable demonstrations of earth-powered "electrical hoops" employed pith-ball penduli as signal indicators. Widely separated hoop assemblies were set up on the ground. Many of these designs never employed electrical energy. Hoops were inscribed with letters for signalling purposes. Conductive hoops were designed as opened or closed conductors. Synchronous timing had nothing to do with the operation of these mystifying designs.

These influence transceivers were connected with a single wire. The hoops were grounded ends of these distant signalling communicators. Moving the pendulum toward a letter caused a corresponding equivalent movement toward that letter on the receiving end. Messages were exchanged as pendulum swings. Letter position caused an equivalent swing in the receiving hoop.

Articulated messages were communicated in the absence of articulated lines. VRIL self-articulates. Multiple lines were not needed in these strange pendulum telograph designs. Engineers remain ignorant of VRIL native phenomena. Engineers design the redundant. VRIL native phenomena demonstrate all the articulations which engineers convolute. Self-articulation and self- directionality is the VRIL transactive attribute. This is observed in all VRIL communications systems.

Hoops are equipotential gradients. Movement of charge within such a conducting hoop cannot result in distant equivalently directed motion. Other similar hoop-line designs utilized swinging vanes (dialettes) for
the indication of letters. These do not operate by electrical principles. Pendulum telegraphy worked through means non-electrical. Correspondence of this type is quite impossible without VRII.

Pendulum and vane telegraphs reprosented the historical persistence of rabdomancy and pendulomancy while keeping participants from direct eidetic contact. Focussing attention into the inscribed groundhoop would project eidetic experience directly into the communicants. Code would be eradicated thereby. This ancient-most means of communications would be re-discovered.

Researchers have developed several kinds of VRIL dialettes (Meinke). Dialettes and vanes indicate VRIL permeative spontaneous transactivities. Transactive projections impel rotors and vanes. Inertial dissolutions follow VRIL world projections. Pure motion requires specific eidetic transactions. There are eidetic worlds whose presence generates specific kinds of motive effects. These worlds are motive worlds. Conducting these eidetic worlds is channeling pure motance.

Jangling bells, bobbing penduli, spinning rotors, dialettes, earth compasses, and vane indicators have been enjoined to aerial masts and ground rods with success. Motor action is not the result of mere static-electric forces. These motional effects come from the ground as well. Devices have been grounded and shielded to prevent electrostatic detritus from contaminating observations. Experiments with such configurations have verified and replicated these motive effects.

Such native VRIL motor forces are employed in rabdomancy, pendulomancy, and early influence-telegraphy systems. The history of influence telegraphy is inexorably linked with rabdomancy, pendulomancy, geomancy and the use of compass-dialettes. The hand-held rod or pendule is an antenna for VRIL threadways. Sensitives become VRIL permeated in a special organismic transaction with the ground. These moments give exceptionally viscero-eidetic empowerment toward the verification of VRIL channelry.

Plants move in rhythmic fashion with VRIL transactivities. Ivy and moming glories curl around grounded rods and fences. Trees and flowers move with VRIL transactive surgings. Rabdomancers take their lead from the bobbing limbs of trees activated beyond static thresholds by the wind. Freely swinging vanes assume distinct material-dependent VRIL axes. Winds do not alter their alignment preferences.

The motor actions of penduli and rabdi are not the unconscious motions or "subtie
reflexes" of the operator. Motor actions are the native VRIL projected polarizations in inertial space. Mild activations of the antenna are achieved through rotations (penduli), loose probings (rods), and visceroeidetic direction ("aquavideo").

VRIL self-articulates, self-organizes, self-arranges, and self-maintains the operations of its own technology once human agency has provided the material pathways. VRIL technology employs human agency as privileged participant in co-creative works. VRII technologers construct and configure specifically transsctive artifices with an aim toward altering geo-regional consciousness.

Human operators serve the inflections and intentions of VRIL in maintaining the specific material components required by VRII. Luigi Galvani was especially aware of the projective "atmospheres" of metals. Galvani intuitively suspected that metals projected some special influence into surrounding space. Galvani was unaware of the cidetic communications projected from metals and minerals at all times. Galvani observed sudden enormously powerful projective surges among the metals when these were properly aligned and oriented. These observations remind us of statements made by more modern researchers (Moray).

Galvani viewed the metals as solid centres which materialized amid the activity of generative essential atmospheres. Metals are projected generations. Contact with the metals derive experiential presence from these living "atmospheres". Configurations and arrangements of metals directs their projections.

The mere presence of a metal plate is a sufficient arrangement to create viscero-eidetic organismic responses in humans and animals alike.

Galvani discovered that dead animal parts (frogs and dogs) show signs of revivification when exposed to these thready eidetic strains. Contact with the metals was not necessary. Space itself was reservoir to these living aerial currents. Animal tissues engage and transact the VRIL motor effect. This peculiar force is VRIL projected polarizations in inertial space.

It is possible to yet demonstrate these effects with small configurations of dissimilar metal. Arrangements of dissimilar metals disposed on opposed sides of a thin metal vane reveal the presence of aerial energy channels. The vanes move and oscillate when in these metal reactor "cavities".

The presence of dissimilar aerial metal plates conditions specific VRIL transactivitios. VRIL projections cavitate inertial space. Thready eidetic strains are experimentally demonstrated by organismic
interposition. Strong visceral strains are sensed between distant dissimilar metal plates in absence of contact. Certain sizes and masses of the metals are necessary for these effects to be wholly experienced.

It is possible to yet demonstrate these effects with small configurations of dissimilar metal. Arrangements of dissimilar metals disposed on opposed sides of a thin metal vane reveal the presence of aerial energy chamels. The vanes move and oscillate when in these metal reactor "cavities".

VRIL vanes have been arranged with water as an active agency of intensification. Galvanic oscillators have been assembled and successfully demonstrated. Results of these experiments have been replicated. A configuration of dissimilar metals and eloments is sufficient to cause the constant undulation of a freo-swinging vane.

Weather vanes and lightring rods project transactivities in districts. Responses of the districts to these projections are sudden and unexpected. The emergence of house-protecting sceptres follows the long tradition of European talisman design. Is it indeed the wind which moves weathervanes at all times? Have there been instances in which VRII motor effects have not in fact preceded the work of the wind?

Property disposed platinum sceptres is a proven lightning-protector. Eidetic content of platinum impacts inertial space in sharply focussed vertical cones. Resulting inertial interaction eliminates electro-detrital conductions when property aligned. designed, and disposed.

Copper-covered steeples and copper masts transact their sensual softness and content in districts. Certain fundamental conscious states permit examination of district consciousness-compositions. Ground node displaced iron masts and monuments give powerful sharpness of conscious acumen. Each metallic mass radiates its VRIL projected eidetic content.

Free-swinging aluminium vanes execute sudden movements and assume inexplicable orientations. Weather conditions cause these to forcibly move toward lightning strikes well before the strikes occur. The motor reactions cannot be the simple results of electrostatic induction since the vanes were well-grounded. Specific positional alignment were observed to effect magnified motor actions. Other spots seemed to depress these effects considerably. Left alone the vanes assume a characteristic alignment pattern which represents material-specific VRII channel polarization.

VRIL channelry sustains the ground and projects space. All consciousness seeks the place where these subterranean channels
structure and project conscious space. Matorials assume alignments specific to these directions. Suspended rods of various freoswinging materials were allowed to assume their natural rest-states in the VRIL space. Each assumed characteristic poise and orientation in these regards. The entire assembly of these suspended materials went into sudden and violent ro-alignments when approached by the experimenter. These demonstrations are reminiscent of observations made by other researchers earlier in this century. The "Sthenometer" demonstrated similar VRIL motor action in various forms (Russ, Thorr, Crookes).

Nearly overy Victorian scientist of any repute had attempted the explanation of "spiritualistic energies". Faraday, Crookes, Lodge, Tesla, and others seemed desperate in their need to either discover or cover the heart of this historic quest for VRIL. Reactive academic repugnance for vitalism was based on differences of sensitivity among researchers.

Only sensitives could discern the causative agencies which generated and supported inertial manifestations. Crookes wondrously beheld the delicate ectoplasmic comuscations in gaseous discharge tubes and saw them to be VRIL LIGHT displays. The Crookes radiometer was an outgrowth of attempts to define aetheric presence.

Academicians focussed upon the study and collation of inertial effects. Independent vitalists maintained the ancient awareness of formative forces and insonsate causes in nature. VRIL technology was gradually doveloped by these personages. VRIL empathic communication systems began to emerge from the forgotten depths of time. Various suspended materials align themselves amid the VRIL active matrix. Different materials reach different rest-alignments.

VRIL motor effects are first observed in conscious undulations and eidetic oscillations. Visceral motor effects are important in the study.

Dreams and visionary episodes occur with greatest experiential depth along specific routes and in specific ground nodes. Subtof designs which John W.Keely demonstrated.
T.A. Edison describes how vocal energies may be directed (tangentially) upon any roughened surface through a ratchet arm. The resultant frictive effect drives the flywheel continuously. This is problematic from theoretical considerations. Acoustic sound is undulatory.

Unipolarmotion which results from singing into a vibrating diaphragm is not acoustically generated motion. The vocal engine is not an acoustic rectifier. Acoustically driven
membranes undulate. Backward friction on the bevelled wheel limits whatever forward momentum has been initiated by the driverratchet. The initial thrust becomes greatly magnified through specific vocal components (primary vowels).

VRIL thready projections engage viscero-eidetic transactions. Projections engage material windows in several spontaneous anomalous activities. Legends tell of "flying" metallo-forms. Geometric structuring of metals and minerals may bring forth VRIL realities previously considered mythological.

Vocal and tonal patterns reveal VRIL thready auric passage through inertial space. Each thready source produces distinct patterns. Voices differ mutually in pattern. Tonal sources also produce mutually different pattems. Vocal and tonal patterns entirely differ. The results are not due to tympanic vibration alone. Primary vocal utterances give luminous viscero-eidetic transactions of surroundings.

Sizeable tympanic surfaces reveal the spatial form of a sound impulse. Differentiation between acoustic impulses and thready auric transactions become clarified when examining these patterns.

The "Vocal Engine" and sound radiometers are VRIL motors. Freely swinging material vanes and rotors self-align and selforient in the VRIL space structure. Such vanes demonstrate response to vocal utterances. Vocal- polarizations have been demonstrated (Vassilatos). Vanes which have been vocal-polarized follow the one in whose voice they have been imprinted. Unipolar motion which results from singing into a vibrating diaphragm is not acoustically generated motion. The vocal engine is not an acoustic rectifier. Acoustically driven membranes undulate. Backward friction on the bevelled wheel limits whatever forward momentum has been initiated by the driverratchet. The initial thrust becomes greatly magnified through specific vocal components (primary vowels).

VRIL thready projections engage viscero-eidetic transactions. Projections engage material windows in several spontaneous anomalous activities. Legends tell of "flying" metallo-forms. Geometric structuring of metals and minerals may bring forth VRIL realities previously considered mythological.

Vocal and tonal patterns reveal VRIL thready auric passage through inertial space. Each thready source produces distinct patterns. Voices differ mutually in pattern. Tonal sources also produce mutually different patterns. Vocal and tonal patterns entirely differ. The results are not due to tympanic
vibration alone. Primary vocal utterances give luminous viscero-eidetic transactions of surtoundings.

Sizeable tympanic surfaces reveal the spatial form of a sound impulso. Differentiation between acoustic impulses and thready auric transactions become clatified when examining these patterns.

The "Vocal Engine" and sound radiometers are VRIL motors. Freely swinging material vanes and rotors self-align and selforient in the VRIL space structure. Such vanes demonstrate response to vocal utterances. Vocal-polarizations haye been demonstrated (Vassilatos). Vanes which have been vocal-polarized follow the one in whose voice they have been imprinted. One may refrain from speaking and be "followed" by the moving vane wherever one moves.

Pendulomancers employed wooden blocks to prevent their muscular tremors from distorting pendulum gyrations. This anomalous practice was employed by European dowsers. Several photographs of these methods are extant.

The wooden block functions in identical manner with the wooden block eidetic diffractors employed to "deaden" telegraph line vibrations (Connor).

Sound-deadening blocks provide a mysterious clue to the source of night telegraphline vibrations (Connor). No such block mounting can suppress line vibrations. Line vibrations would continuously permeate the block itself and transfer acoustic sound into the stationhouse. Such an organic block dosign operates because it modifies a nonacoustic energy.

Experiments were performed with bent wires which were grounded to provide strong eidetic transactions. The identical bent metal wire was sandwiched between wooden block (one free terminal grounded again) failed to give the same eidetic representation: deferring the otherwise deep groundward direction of consciousness into a starry region of space.

Such deferment of eidetic transaction results in reduced VRIL-induced line vibration. These block designs dampen eidetic transactions. The sounds stop because the transaction is deferred and altered. These sounds reached crescendi during the early moring hours and conform with our observation of VRII projected sounds which flood enclosures shortly after midnight (2-4 A.M.). These sounds are viscero-organismic, nonacoustic, and are beneficially permeating.

An impressive viscero-inertial transaction takes place when minerals and metals are immersed in flowing water. The body alternately absorbs VRIL and inertia in pulsations. Such pulsations alternate according
to a fixed numerical sequence which is reminiscent of pendulum oscillations when dowsing minerals. These alternating organismic pulsations are enjoined in specific numerical sequences: forward surges between VRIL conductivity and backward surges of inertial resistivity.

VRIL motor power was employed in a design by Nathan Stubblefield as reported. Lester Hendershot managed the powerful transaction of VRIL motive power. This motor was distinct from the Hendershot Transformer.

VRIL IMPRESSION RECORDERS

Conduction of VRIL transactivities along various conductors has long been established. Dr.Anton Mesmer conducted VRIL energies from special capacitors (grounded) and condensers (insulated) through iron poles, along iron wires, and through silken threads. Rocipients were healed of many maladies through transformative viscero-eidetic transactions.

Galvani demonstrated that projected influences flooded space gaps among dissimilar metals. Galvani showed the conduction of such space-strains through copper and iron wires. Powerfully vivifying energies were conducted through wires in specific transactive conditions. Moderately elevated aerial terminals gave thrilling (non-electrical) "shocks" when grasping grounded lines.

An amazing anecdote of silver crystallizations during thunderstorms has been given in a previous volume (circa 1700). Such lore matches those which report eidetic scene impressions made upon organically coated matter during lightning storms (Corliss).

Baron Karl von Reichenbach showed that it was possible for sensitives in darkened rooms to discern differences between polarities of magnets, crystals, lunar light, and solar light through wires. T.G. Hieronymus proved that the "chlorophyll energy" (VRIL eidetic transaction) in sumlight made plants thrive in darkened rooms.

Holistic pictures may be transacted through wires in absence of coded scanners. Wires serve VRII self-articulating threads behaving optically. No loss of image or signal strength occurs however distant. Radionic tuning devices focus eidetic transactions. Guidewires may fix these worlds on photographic plates and sensitive papers. When used with cheostatic tuners auri-sensitive papers do produce special and mysterious depictions (Drown, DeLaWarr).

VRIL entuned systems produce clarified eidetic images across suitable material media. Clarification of eidetic images roquires VRIL eidetic node entunement
(Drown, DeLaWarr, Dobler). Dr.Ruth Drown produced radionically entuned photographs of anatomical interiors. Radiovision is an eidetic transactor of superlative quality.

Radiovision apparatus utilized flickering light and singlo-wire "guides" of eidetic whole images. Photographic film preserved the effects of these shadowgraphs. Transactive phenomena engage eidetic impressions. Such eidetic images are directly transmitted through single wires to sensitive plates.

Dr.R.Drown discovered it possible to recover anatomical perspectives from distant places over a single wire. Other researchers duplicated these results successfully (DeLaWarr).

Natural flickering lights produce eidetic images which deposit on organic material media (Corliss). Inductoscripts, lightning figures, keraunographia, or lightning shadowgraphs are prolifically reported. Such shadowgraphs are made via distant lightning flashes. Images of specific objects remain deposited on walls, floors, and other organic absorbers. Records indicate these shadowgraphs to be projective images. When objects lie between lightning and observers phenomenal projection of images is observed on organic absorbers.

Organic suspensions reveal organismic VRIL conditions. The delicate formations and general fluidic traces of certain organic suspensions give direct manifestation of VRIL space patterns.

Paper chromatographic records of crystallizations employing specific salts during specific astrological configurations record VRIL permeative influence (Kolisko, Pfeiffer). Archetypal chromatographs revealed the permeating structural activities of insensate VRIL transactions in darkened rooms. These traces correlate with those made through chemical telegraphs.

Crystallizations followed patterns specific to local VRIL transactions.

These archetypal effects are magnified when experiments are performed near the ground proper. Connectivity with chromatographs and metallic evaporation dishes was achieved through VRIL aerial-ground threads. VRIL insensate activities surpass our own sensory modes of communing. Certain VRIL threadways enlarge our sensory apprehensions to include insensate experiences.

Chemical telegraphic systems transact eidetic experience long before radionists rediscovered the effect. Primitive VRIL telegraphic radionic tuners (rheostatic) transact complex permeating eidetic experiences among operators. Chemical telegraphic systems detect VRIL stimulated luminescence
in chemical media. Chemical telegraphs used special papers to register signal markings (Bain, Smith, Westbrook, Rogers).

Chemical telegraphs offered strange and anomalous electric circuitry (Sawyer: 166, 305, Lefferts, Edison: 141,776: 150,848: 156,843). Certain employed numerous ground plate penetrations (earth batteries) along their line length (Edison: 141,776). These designs were sensitive enough to utilize very little current (Edison, Lefferts, Little). Chemical impression reconders utilized eidetic entunement via rheostats (Edison, Lefferts, Little). Chemical telegraphs frequently registered thready auric signals while being electrical short-circuits.

Primitive VRIL tuners transact complex luminous glows in absence of organismic contract-sites. VRIL stimulated hminescence can be photographed. VRIL transactivity leaves traces on sensitive papers. Certain pendulum designs combined motor principles with impression recorders (Bain, Dyar).

Numerous chemical formulae were shared for posterity. Chemical telegraphs use sensitive chemical papers (potassium prussiate) in detecting the presence of (electrical) influence.

The formula for making auri-sensitive papers was given (Bain). Very litile electricity was actually used in chemical telegraphy (Lefferts). Chemical telegraphy utilizes anomalous electrical connections and impossible charge arrangements. Lines are entirely positive in "charge". Grounded line ends are each positive in "charge". Application of earth batteries ("local batteries") to chemical telegraphy (Lefferts).

ENTUNING VRIL

Empirical researchers were extremely VRIL consciousness in absence of terminology. The confusion and disorder of intriguing circuitry is absent in VRIL technology. Components are empirically combined to produce very specific transactions. There are no confusing routes and exchange paths. VRIL self- articulates and arranges its own intelligence in components. Components are VRIL guided to perform as the VRIL presence intends.

Primary function was forgotten and lost...while the electrical function was retained. Comprehending the separate function of each component may be valuable only insomuch as we gain insight to their functioning within each aggregate. We find chokes, tunable coils, resistors, tumable (carbon) resistors, rheostats, resistance coils, chemo-electric batteries, branched groundplates, and wire conduction paths. These are the elements of circuitry. They are
not primarily electrical components. Together they form whole aggregates. These are the parts of the VRIL resonant system called "Telegraphy".

Eidetically transactive nodes attract and hold organismic contact. The sticking reaction is a polarization of physiology when encountering eidetic nodes. African soothsayers use special wood-grain rubbing plates to discern organismic states of mind and health.

Metallic surfices are covered with mi-cro-eidetic nodes. Minerals and crystals are permeated with numerous major eidetic nodes. Woody grains and vasculated materials display natural eidetic nodes when properly ground aligned. Addition of other matorials to such basic componentry produces new eidetic nodes. These were called "rates" by radionists.

Luigi Galvani discovered physiological responses in distal spaces among large metal plates. Conductive contacts were not required for the powerfile experience of visceral excitations. Interposing the hand between separated plates of copper and of zinc gave strongly vivifying strain states. Contact with other dissimilar metallic contacts gave other similar effects. Galvani distinguished between the physiologically vivifying effects which he discovered and those which Volta claimed.

Antonio Meucci discovered tonal-physiological responses in human bodies. Anomalous observation of conducted complex electro-acoustic tones among human subjects was embodied in the worid's first telophonic system. Human subjects could "hear and speak" through a charged-wire system. The Meucci physiophone enjoined VRIL transactions when ground-connected.

Human physiological response to organo-tonic conduction was characteristically vivifying. Exposure to physiophonic conductions differed entirely from exposure to the tonic currents of inductoria. Inductoria provided fixed tonal currents high in detrital products. Physiophonic currents were strong in a vivifying presence.

Baron Karl von Reichenbach found it possible to transmit empathic signals through varieties of lines. Tuning variables were not employed.

Threads, strings, chains, and various metallic wires were used in darkroom experiments. Sensitives grasped one end of long conductors. Conductors terminated on varieties of minerals and metals. Sensitives registered personal reception of emotion and visceral sensation.

Various minerals, metals, crystals, magnets, plants, sumlight, moonlight, and starlight were viscerally transacted by these
methods along conductive lines. Records do not detail holistic visual impressions among the sensitives.

Elisha Gray discovered the frictive offects of organismic contact with charged grounded metal plates. Capacitative contracts yield separate and minute nodal frictive contacts. These seem continuous with casual examination. Close examination reveals that seemingly continuous frictive contacts aro composed of close, distinct, and separate nodes. Eidetic transaction is the proper means of examining components, systems, and states.

These components transact eidetically with operators. Potentiometers and variable capacitors were developed in telegraphic systems to enjoin ground node potentials and secure "line balance". Telegraphic lines successfully operated among ground-plates through entuned states. Rheostats and capacitative ground forks were utilized to enjoin district nodes.
"Good ground" determined telegraphic efficacy. Rheostatic entunement insured powerful code transfer (Buell, Little, Field). These topical effects were made possible only because VRIL states were successfully engaged by the systems.

Dr.George W.Starr-White discovered a strange series of autonomic muscular tonic states in human physiology. Theso were enjoined by assuming specific positional alignments with respect to ground. Abdominal reflexes were autonomic and involuntary. Visceral responses manifested when physiology encountered spatial dispositions of insensate energy.

Like the iris of the eye, the visceral organismic response to spatial energetic states was the assumption of very distinct strain states. A series of specific reflexes were discovered. Each manifested involuntarily when specific energetic strains permeated space. In determining viscero-tonic reflexes Dr.Starr-White relied upon abdominal percussions. Specific tonal differences gave the specific muscular reflex elicited by any permeating energy.

Non magneto-electric pervasive ground energies dominate human physiology. Dr-Starr-White employed grounded terminals for the conduction of these mystery energies. The "Valens Cosmo-Electro-Energy Condenser" utilized telegraphic principles and was a return to ancient groundoriented technology. Vivifying effects were enjoined through the absorption of these semi-sensate VRIL threads.

Dr.A. Abrams found that "human energies" could charge telegraphic components in specific manner. Telegraphic theostats and Leyden jars were charged with "human
energy". Proving the existence of human energy relied upon several distinct autonomic reflexes with which Dr.Abrams had previously dealing.

Dr.Abrams discovered distinct frictive actions when contacting humanly charged systems. This friction was later utilized in determining of tonic states. Touchplate capacitors were an unprecedented addition to rabdomantic arts. Radionic tumers enjoin the participation of their operators through the rubbing plato contact (visceral component). Variety of nodes is established through variability components.

Rheostats of various compositions and variable capacitors have been used to determine radionic rates. DrAbrams externalized the abdominal reflex reactions by employing reoostats. Scaled rheostatic positions were specifically equated with abdiominal reflexes. This allowed the examiner to relinquish abdominal percussion techniques.

Componentry reflected organismic sensitivities. VRIL activate components are quasi-intelligent. There are some sensitives who eliminate of the rubbing plate and successfiully discem rates directly through space tensions (visceral). This method is utilized by dowsers who use the hang-rod method to scan districts. Abdominal reflexes signal eidetic nodes. Powerful eidetic nodal transactions are engaged via specific ground alignments. Utilization of ground-fixed rheostatic tuners alters district strain-states.

Each VRIL system component must be empirically experienced through various contacts and distal examinations. Determinations of VRIL functions is empirically appreciated. VRIL configurations must individually and empirically designed. These empirical discoveries deal with eidetic projections which hold their form through time. One may return to these configurations and find identical projections long after time has washed their image clean from memory. They are not the result of self-deception. It is critical that we collate consortium eidetic impressions to find significant differences and similarities among examiners. Transactive differences may reference special potentials yet unappreciated.

Radionic "rates" are eidetic nodes in minerals and metals. Material geometry dotermines eidetic nodes. Massive minerals and metals of length may have several longitudinally distributed nodes. These may occur as discrete points or in wavy bands. Natural massive crystalline minerals and metals have numerous eidetic nodes throughout their volumetric mass. It is possible to isolate eidetic nodes in specific sized minerals and metals.

Broad organismically transactive plates
have been designed (Vassilatos). These may be utilized to give patterned rate displays. Mappable nodes are surface located when using thin transactive materials. These special conductive strips may be connected with minerals and metals for the determination of eidetic nodes. Such a strip is frictively contacted along its length and breadth. This design offectively combines the variability component and the contact plate. Examination of the nodal pattern topically differentiatos minerals and metals.

Such a radionic display plate may. be used to enjoin eidetic transactions once nodes ("rates") are determined. The older methods which were pioneered by the mentioned logendaries limited us to single rate determinations. Designers utilized aluminium capacitor plate tuners (Miller). Staged theostatic switches of carbon and nichrome were employed as variability components (Hieronymus, Drown). Others used telegraphic carbon rheostats and inductors. Specific conductive media effect specificity in received "rate" distribution.

VRIL tuners mark eidetic nodes. Spocific minerals and metals contain specific eidetic nodo-quantities. Each such material displays specific eidetic node distributions throughout their mass. Each eidetic node gives a special view and experience within a specific periphery and atmosphere.

Great accuracy in determining radionic rates was achieved through the tuning dovices of Dr. Hieronymus. Neither aluminum nor nichrome are elements found to any normal degree within the human body. Carbon is the chief organismic tuming element. Carbon should be included as the prime natural tuning material. The powerful emanational influence of the iron should be enjoined in transactive tuners. Both elements in combination represent the agency through which we are organismically entuned with VRIL.

Radionic "rates" are established through sensitive contact. Catalogues of rate registrations are established through consortium replication. These positions were numerically identified when variability components were numerically scaled. Rate registrations are not numerical positions in VRIL space. Rate registrations are eidetic nodes. Rate registrations contain far more eidetic information than mere viscero-tonic adhesive power. Most significant operators receive information directly through eidetic visional experiences.

Materials and variability componentry (rheostats, resistance step switches, capacitors, crystal lodes, metalloforms) produce eidetic node entunement. The increased meaningful eidetic transactions which were
thereby enjoined were noted for their "clarity of signal". Each design produces specific inertial space concentrations or space dissolutions. White inertial sheaths bring perceptual congestions, distortions, and organismic difficulties. Inertia is fibrillic when concentrated. White inertial fibrils are dangerous to organismic intogrity. The enjoinment and concentration of inertial detritus must be avoided. Designers must structure componentry with the operator in mind.

Human organismic response to eidetic transactivity is most intense when tumer dosigns include natural forms of iron and carbon. Material organismic components (carbon) and living blood (iron) magnify transactivities.

All substances are simultaneously (proportionally) VRIL-conductive and inertialresistive. Organismic VRIL sensory systems do not easily participate in volumes of high inertial concentration. Inertial detritus is strongly absorbed, and distorted away from the entire organismic presence when near or in contact with hon. fron contracts prove to form organismically reflexive conical shields.

Iron is a very sharp transactor. Thready penetrations of iron into the human body can be painful at times. Iron penetrations sting the recipient. Iron is organismically accommodating. Iron offers the organism adaptive difficulty. Iron receives and responds with every corresponding change in the vitalistic world. Iron sends powerfully overcoming messages into the body which can hurt. Carbon softens the reactivity of the iron signal considerably. Organic minerals and materials are strong organismic VRIL contacts. Organic minerals and materials are used to ease contact transaction with eidetic worlds.

It was discovered that these 2 elements in combination produce a softened organismic receptivity. Carbon-iron transactivities are very "brittle" and "noisy" during certain times. Manganese dioxide softens inter- aulric thready transactions on behalf of the operator.

Manganese dioxide powder neutralizes transactive discontinuities. Transactive discontinuities are experienced as signal "static". Manganese dioxide powders provide smoothened signal transactions on behalf of the operators. Combinations of iron, carbon, and manganese dioxide powders make continuous transactions possible. Eidetic transactions are made effortless through the employment of this mixture.

Static reduction in telegraphic lines was achieved through the use of carbon (Rosebrugh). Very curious "tunneling" phenomenon are enjoined through this organismically designed coupling mixture. Received transactions are effortlessly entuned. VRIL
sensory response is instantaneously sustained through this mixture. The activations of VRII sensory organs is mysterious.

The right organismic side may be the VRIL side: the right eye, the VRIL eye. VRIL thread synapse activity makes difficult the physiological location of these VRIL sensory organs. VRIL enjoins perfoliate synapse spaces. VRIL organs exist as a space anatomy "among the synapses". VRIL organic anatomy remains unidentified. These synaptic distributions are the receptors of VRIL.

Organismically conducted VRIL threads project from the body as thready striations and tufts against the inertial space. Observation of aurae reveal the existence of these tufted striations. VRIL thread body projections radiate from all objects and beings.

Auric interactions and interblendings may be detected among sentient beings and objects. Organismic VRIL aurae in proximity with specific material configurations are powerfully drawn into systems. System-conducted VRII threads merge with applied aurae to provide viscero-eidetic transactions among communicants.

VRIL spreads out feathery aura threads in sequence upon carbon. VRIL auras become feathery and copiousty ciliated in carbon. VRIL threads do intensify at specific points along the carbon surface when ground contact is provided. Eidetic transaction roquires VRIL ground contact. VRIL threads discharge at specific nodal points along carbon rods or plates. These mark VRIL eidetic nodes.

Dr.A.Abrams arranged experimental tuners to specifically entune thought- forms. Abrams' work represented another step in a progressive movement toward recognizing empathic communications systems. Telegraphic systems were long operating in these very transactive modes. Connections were made with specific organismic centres. DrAbrams demonstrated that thought-forms could be holistically entuned and transferred through conductive lines.

Visceral thought transactions through tuned componentry exceeded the strength of unaided "telepathic" transactions. Telepathic communications are excessive in specific VRIL alignments and districts. Ordinary unaided telepathy relies on VRIL ground transactivities, channelry, and ground nodes. Holistic impressions are transmitted through one VRIL organism to others. The entire organismic sensory system becomes the articulate transmitter of experience to others. Those whose organismic correspondence is properly disposed and aligned receive experiential holisms.

Interpositions of minerals, metals, and
special components (rheostats, resistance switches, minerals, organic matter, etc.) enhance, amplify, and clarify shared eidetic transactions.

VRIL enters grounded materials to established volumetric distributions of eidetic nodes in patterns. Frictive adhesion phenomenon is utilized to specify nodes. Nodes are located across an adjustable tuning scalo. Tuning mechanism and the frictional touchplate is combined in a single design. Such a system realizes an entirely new world of polyphonic rates proviously impossible with "single rate" tuners.

Broad frictive adhesion plates have their use in mapping VRIL spatial distributions. Large surface area glass plates are coated with a mixtuse of iron, carbon, and manganese dioxide powders. The plate is arranged perpendicularty to district VRIL threadways and allowed to become VRIL polarized. Visceral examination of this coated plate permits actual mapping of VRIL activity. Plaque mappings of this sort indicate that specific thread forms remain constant while others fluidly migrate. Geometric distributions of these maps are shape shifting over time.

Such broad plate effect enhanced VRIL consciousness in the operators. These exposure plaques become the sensory transmitters of distal eidetic nodes. Sensitivity to meaningful and mysterious impulses is attained through VRIL artifice. One may roceive knowledge and vision exceeding that of mere distant places and events through technologically magnified awareness.

VRIL ground thread dynamics seem to proceed in deranged and mysterious expressions when threads are observed. The observation of the strange VRIL thread language does not enjoin the examiner with an eidetic experience immediately. Exposure to the language must be continual and suffiusive. Runic messagings become intimate and familiar with exposure. Depth of eidetic exposure requires time.

VRIL threads must be enjoined for transactivity to take place. Skewed thread perfoliations do not enjoin strong transactions. Successive exposures magnify the VRIL vocabulary of operators: who suddenly perceive and interpret the permeative and mysterious runic archeforms seen throughout their districts. Broad plaques such as this are the effective sensory transactors of a natural VRIL communications system.

VRIL self-articulation permits continuous reception and participation in eidetic transmissions from unknown distal sensory node sites. These units are elementary in form. They assume a darkened radiance in which eidetic transactions commence. Operators are eidetically translated into undis-
closed distal locales according to the ways of the VRIL natural structure by these artificial and external retinas.

Telegraphic and telephonic switchboards serve the same function in the operators. Those who are positioned before the variegated jack-housings and nib-like projective terminals of copper become continually suffused with eidetic transactions. Multiple VRIL discharges project from copper and iron terminals. VRIL discharges intertwined and interpenetrated the auric striations of the operator. Such persons becamio exceptional eidetic agents through continual exposure to line-comective distal nodes sitos.

The literal exchange and magnification of social consciousness was proliferated through these wired systems. Eidetic information self-articulated in lines from groundplate stations. Eidetic information was entuned through cheostatic and capacitative enjoinments. Eidetic information was distributed along guide-lines. Eidetic information freely discharged among ground nodes throughout the line length.

Buried conduits were permeated with fibrous and follicular VRII threads by mere alignment, ground depth, and ground-plate placements. Eidetic information projected out into space through multiply stippled terminals and received by operators.

Multiply aristulatod aerial guideways conveyed conscious exchanges into local homes at specific ground nodes (street corners and neighborhoods). People who lived in these city-sectors absorbed VRIL transactions and became exceptionally sensitive and gifted.

Weather patterns are the result of mysterious VRIL eidetic transactions. Fine ground-tuning at telegraph station groundplate sites effects district weather control.

Gradual transformation of telegraphic and telephonic exchange systems more closely approached natural VRIL Ground Systemologies. Samuel Morse began with ground-buried cables. Such cables became flooded with "static". Morse quickly and unquestioningly changed to aerial wire-pole systems. These remained the norm until buried conduit exchange systems were perfected. Each such system was the redundant expression of existing VRIL Ground Systemology.

VRIL self-articulates. Organismic vocal utterances emplaced in grounds require no artificial cablery or distributive channels.

Several researchers experimented with non-powered exchange systems. These found their perfection in systems perfected by Nathan Stubblefield. Revelations of VRIL ground self-articulations reigned for several years (Meucci, Rossetti, Tomkins, Brown, Stubblefield). Later researchers forgot the

Stubblefield system. Powered ground wiroless systems were pursued by many others (Tesla, Preece, Morse, Bell). Most of these were not vocal transactors. Nathan Stubblefield transected vocal exchanges with clarity and volume through the natural VRIL ground articulations.

VRIL progressively enters the sensate and impacts the inertial. Radionic rates are eidetic leakage points in our world. They open our consciousness into other realitios. VRIL nodes are found everywhere on the ground surface. Ground-state radionic rates are nodes whose fiundamental pervasiveness dominates all other rates.

All minerals and metals are VRIL transaction sites. VRIL projects mineral, vegetable, and animal forms. VRIL is simultaneously crystallic and fluidic. VRI appears in floreolar displays. Delicate VRIL threads compose the tissues of flowers. VRII threads compose minerals and metal filigrees in rock. VRIL extends the ganglia of organismic integrity. VRIL projects the thready plasmal resplendence of the galaxies. VRIL is the fundamental form of the universe.

The verticillate penetrations of metallic lodes, crystals, and natural minerals among inertially congealed masses is a mystery. The naturally occurring appearance of metals and minerals has much to do with VRIL conditions during the time of material generation. Complex and contrary conditions prevailed in unknowable proportion during the generative epochs of archane existential history.

This generative mystery may be solved in examinations of the eidetic transactions which have occurred in those districts. We may encounter difficulty in eidetically retrieving knowledge of these pro-archaic ages. Difficulty in comprehending rumic language may prevent such eidetic retrieval.

The veined appearance of minerals and metal lodes amid matrix rocks infers that strong VRIL projections congealed powerful enveloping inertial spaces.
Gneiss massives reveal dark veiny threads (high VRIL conductivity) with speculate (inertialized) resistive matter. Contact with these materials propels eidetic experience through the dark filigree.

VRIL channels are found in the ground geology at depths not exceeding several hundred yards. VRIL causeways are the vast regional axes which generate and sustain whole regions. VRIL transacts with all overlying minerals and metals, arrangements, components, and spaces. Minerals and metals exist in conscious states. VRIL transactions are meaningful to recipient minerals and metals.

The VRIL world is flooded with eidetic
images. Sensation and consciousness are its blood. Projective worlds exist independently in absence of projected forms. They may be located through their projected materials which respond to their presence. All materials respond with local VRII channelry. All materials when touchod are viscero-eidetic terminals. Organismic modulation of native VRII provides organismic expression and exchange among juncture points. Eidetic communications is possible with special auripermeable apparatus.

Virtual forms emerged from the ground with entunement of telegraphic systems. Ephemeral virtual architecture materialized around the telegraphic system. The eidetic transaction was sustained and magnified by telegraphic components to which the operators were privy. Telescopic telography was an unknown eidetic feature of the art. Fragments of the telegraphic circuitry become stellar termini when properiy configured and poised.

These activities did not require aerial elevations. Certain ground conduits projected bydrant-like access ports in the ground at special loci. When natural stellar connectivities with VRIL nodes were armed with telegraphic conduits the effects were striking. Eidetic information loaded the grounded systems and was transacted with unwary participants.

Human experience of other conscious worids powerfully occurs when contacting eidetic ground nodes through specific metals and minerals. The natural VRIL ground structure is suffused with eidetic transactions constantly. The VRIL structure is a communications matrix of unimaginably vast proportion. This SYSTEM intercomects humanity with other worlds. This SYSTEM holds the true secrets toward practical experiential teleportation and empathic communications. VRIL dendritic structure is fibrous and perfoliate. VRIL projects glowing black space. VRIL brancates into black glowing space and permutes into new experiential worlds. Operators are privileged to transact and participate in co-creative acts.

Distal bilocations connect operators with VRIL juncture in absence of experiential translation through intervening spaces. Instantaneous juncture placements are notable with bilocational experience. Distal sites are possessed of natural sensory apparatus. This native mystery explain telepathic exchange and points to the future of true geo-regional communications. Natural articulate response and distal transactivities produce simultaneous distal experience in distal nodes.

Certain translocations guide the participant along specific paths to some ultimate point in the eidetic experience. Other trans-
locations are discontinuous: operators experience "jumps" along an eidetic guide-path. Distal bilocation are instantaneous distal experiential placements. Distal bilocation interconnects communicants with central VRIL junctures.

VRIL junctures are the natural ordained nexial spaces. Repeatable contact with spocific VRIL worlds may be charted among communicants. Communicants merge in VRII junctures. Communicants wordlessly share experience and conscious identity at VRIL junctures. To know and experience VRIL is all doorways.

Communal knowledge is power. VRII operators do alter their environments directly through the proper and powerful direction of VRIL Technology. Cultural raising of district and geo-regional consciousness is the noble labor of VRIL operators.

Instantaneous VRIL juncture placements are notable with bilocational experience. Distal sites are possessed of natural sensory apparatus. Eidetic nodes "experience" and transmit their experience to other eidetic nodes. Eidetic ground nodes are the sensory organs of the VRIL universe. Organismic modulations in native VRIL nodes communicates shared organismic consciousness across vast distances. Communications enjoin those who share in native expressions, language, and runic knowledge.

Visceral effects are the dim perceptions of eidetic worlds. Visceral effects may be insensate eidetic projections. We perceive these as synaesthesic sensations. We may yet be unable to translate their deepest meaning.

Perhaps the VRIL visceral projections are a language which eludes human beings as yet. Perhaps we may learn their mysterious message. Visceral effects are usually the first experiential transactions. Because of this fact we might suppose them to be the fundamental realities. Sentient beings possessed of greater sensitivity and other capacities may perceive visceral effects as conscious foundations.

VRIL transactivity requires new definitions and descriptive terminology. VRII communion is more than verbal exchange. VRIL junctures proliferate shared expression and exchange among VRIL communicants. There are no doubt sentient beings in the universe who speak and comprehend in these generative, ordained symbologies. The exceedingly deep transactions of VRIL causeways are intelligent, mysterious, symbolic, and geometric in representation to sentient beings. Such exceedingly deep VRIL messagings are a mysterious language of the Divine.

The deepest VRIL supply provides and
generates the eidetic worlds which are experienced. The universe is a VRIL projected structure. The VRIL projected structure is an multi-axperiential, optically conscious, sensory structure.

Minds may look along and through specific axes to experience distal sites. Operators of VRIL entunement stations utilize specific material accoss contacts. These may be crystals, minerals, or metallo-forms.

Blockage of experiential continuity is inertia. VRIL eidetic vision through metal plates is holistic. Geometric configurations are eideto-optical in nature.

Eidetic vision proceeds in specific substances as through optical assemblies. Eidetic visual experience may be sharply focussed through material edges or broad surface areas. Each eideto-optical pattern is material dependent and material specific. VRIL cidetic experience is foundational roality for sentient beings.

Geo-regions are vast distances of archetypes and archeforms. Inertial boundaries are deceptive. Participatory passage among geo-regions requires numerous preparations and transactions. One does not simply "march in" to another geo-region without VRIL eidetic guidance. The true VRIL structure of the universe is not what appears to the 5sensor perceptive mode.

VRIL operators manage the spontanoous entunement of specific junctures, obtaining experiential knowledge of distal events and circumstances.

Each VRIL juncture, VRIL node, and ground plate assembly requires a specific rheostatic entunement. Eidetic worlds reveal select axial centres which concentrate distributed awareness across space axes. VRIL junctures and natural nodes are the ganglial centres of the natural VRIL environment.

Telegraphy utilized differing theostatic positions to enjoin the eidetic potential of ground peculiar to the point of entry (Buell, Little, Field). Telegraphic lines necessitate inter-connections which may occur through human demands and therefore become the conductive pathways of eidetic oscillations.

Distortions and continual oscillations of eidetic content create disturbing influences on operators. Difficulty in transacting with meaningful supply results in "broken" messages despite coded transfer clarity. Entumement must be specific. Ground plate emplacement must be precise.

The proper emplacement of componentry in VRIL threadworks releases exceptional eidetic transactivity. Most material configurations engage VRI experiential eidetics at the ground surface. VRII capacitors placed in the ground are especially potent transactive
agencies. The most fundamental VRIL eidetic transactions are ideational, revelatory, metaphysical, and symbological. These eidetic transactive emerge from the deepest hierarchic eidetic worlds.

Dr.Drown utilized a grounded tuning system. Grounded systems alone are eidetically reliable. Vitality and organismic rointegration is the result of eidetic suffusion. Dr.Drown was able to obtain special radiovision shadowgraphs via eidetic entunement and ground contact.

Visceral effects are projected from spocific components when ground node placements are superiative. Visceral transactions offect non-acoustic tones, aromas, tastes, and other synaesthesial experiences into a district (Cortiss, Bradford, Spera). Such transactions may suddenly occur without previous warning. Physical translations and disappearances near specific nodes and among specific kinds of technology are not unroported.

Eidetic energies are constantly surging in the VRII structure. Eidetic energies are the universal activity. We must experience them to be complete. We intersect with them through every material contact. Eidetic examination is the key to all doorways.

MULTIPLE RATE LOADS

A study of the complex VRIL interactivities which occur in grounded conductive systems is afforded us in telegraphic systems. Many empirically workable circuit designs were actually anomalous in activity and impossible in analysis (Edison, Lockwood, Sawyer, Ellison).

Telegraphic and telephonic systems transact eidetic meaningful exchanges with their operators. Tuning components provide focussed meaning to couple with the code. Comprehend the VRII functioning of the telegraphic systems first and fundamentally. Comprehend telegraphy as a signal transfer system last and of least importance.

Telegraphic systems intertinked the consciousness of different geo-regions in foumdational permeating transactions which have yet to be fully comprehended. The VRIL functioning telegraphic systems represent central means through which conscious supply was proliferated among participants directly from the VRIL source.

The examination of telegraph patents and old telegraph designs reveals startling anomalies. Numerous electrically impossible configurations imply the energetic operation of an integrating presence. Working configurations with "wrong connections" abound in the Victorian literature. Theoretics become topic-specific and invention-specific
to excess. Geometrically accurate systoms were often electrically insccurate.

The noumenous presence seems mysteriously transactive in another energetic realm. "Energy" is an improper torm in this regard. The noumenous presence of special designs seoms to be a radiant densification of consciousness itself. Beauty, geometric form, function, direction...mystery...all these seem thoroughly admixed in each of these designs. The operation of such devices depend upon a more fundamental quantity. VRIL is that consciousness. VRIL is that intelligent intogrator.

Recognition of VRI patterns becomes obvious when an excessive use of mysterious ground and aerial comections is observed among such patents. Other anomalous instances involve the use of material interactions and reactive components which demand energetic activities exceeding those ascribed to electricity. The geometric patterning of system componentry throughout the ages demands fundamental examination. VRIL Science provides vision into these primary activities.

Certain telegraphic circuits are found to make "no electrical sense" when examined closely. Their empirically proven results are not due to electrical transformations. We must not study detrital-activities or follow the patterned responses of inertial detritus to VRIL projections. The micro- analytic process of learning from parts to whole does not work in VRIL designs. VRIL Science stresses learning from whole to parts.

Engineers focus tightly on inertial paths, shunts, vibrations, and undulations within devices. One comprehend VRIL transactive functions of systems by grasping whole geometric portions of diagrams. VRIL Science is an art aesthetic. Ancient mystics well understood these axioms. That which forms flowers and mountains alike cannot be enjoined through micro-processes.

Look at the telegraphy designs as intelligent geometric aggregates. The designs are quasi-living organo-crystallic forms. The designs may be viewed as radionic circuits. Marked by extreme simplicity and structural ruggedness these transact great conscious potentials across great distances. When we examine the duplex and multiplex circuits from this point of view we arrive at very different perspectives than when looking from an "electric" viewpoint.

Duplex, quadruplex, sextuplex, and multiplex systems were beautiful in appearance (Buckingham, Delaney). These systems transact simultaneous multiple eidetic exchanges with their operators. Multiple eidetic transactions flooded code with great profusions of meaning and conscious de-
lights.
VRIL continuities and convolute holisms are ovidenced as chunking of system components. VRIL meanings crystallize in systems. Portions of whole meanings crystallize in specific components. These may each be isolated and eidetically examined.

Separating components of VRIL dense configurations results in loss of contert and meaningful system operation. Removal of a significant system chunk suffices to derange continuous meaningful transactions.

Minute details of electro-detrital exchanges do not hold our interest any longer. Maddening conduction paths defy experience and theoretical logic. The anomalies broke the tension of strict engineering design. Most multiplex designs were perfected empirically. Their defiance of electrical theory marks them as VRIL systems. Certain designs exhibit strange and anomalous circuitry (Hughes, Edison: 178.222, 168.385).

We view the eidetic functioning of the circuitry in whole perspective. We see whole design sections as aggregates and VRIL transactive self- articulating cavities. VRIL aristulate threadworiks cover certain design structures and flood space among componentry. No one comprehends these mysterious VRIL languages of form. Telographic systems and their components were capable conductors and discharge assemblies for seif-articulate VRIL.

See whole circuit geometries. Refrain from micro-analysis. Cease the study of specific micro-activities in these designs. VRIL forged the telographic and telephonic systems. Dreamers and artistic designers built what revelation envisioned for them. The evident forms in these systems do not differ appreciably from those found in the Gothic Cathedral System.

Remember that most of the telegraphic developments originally emerged from dream impressions and visions. It is crucial that we pecognize the signature of the Power which forged the system as a primary study level. The empirical experience of these designs in fragmentary replication is the second study level. Eidetic consortium is the tertiary stage of study. The final step is implementing the design components in new VRIL technology.

VRIL gives eidetic holistic transactions. VRIL material configurations release specific eideti-holistic transactions. Eidetic experience is the fundamental test for determining technologic efficacy. Confusion between VRIL activity and electrical impressments caused early electrical engineers to imagine that empirically discovered efficiency equalled "electrical efficiency". They do not.

Empirically discovered means for enlarging and enhancing telegraphic signals had nothing to do with coded transfer (electrical signalling) at all. VRI systems operate in inertial (electric) modes only insomuch as they drained the detritus of VRIL impaction out of the design structure. Most of the anomalies emerge because of these conjugate and antithetical processos.

VRIL transactivity reached peak crescendi and produced copious detrital quantities. These events provented coded transfer due to excessive "static". Meaningfal transaction never ceased functioning during these events. Meaningful transactivity was continuous in the absence of electrical applications. Telegraphic systems worked because they served VRIL principles...not electrical ones. Empirically discovered components and their (apparent) functions were not thoroughly examined to discem important differences. It was assumed that these empirical functions were actual indications that the components were performing electrical work functions. In fact they were not.

The systems worked despite of the electrical impressments. Coils, resistors, groundplates, aerial guidelines, buried conduits, batteries, capacitors, rheostats and other parts functioned for VRIL threadworks.

Inertial technology superimposes artificial code upon VRIL eidetic imagery in systems. Telegraphers receive steady eidetiholistic experience of every line terminal in absence of applied electricity. Telegraphers were a secretive guild, sharing secrets of the trade and mysterious phenomens of the daily operations of systems. These anecdotes and peculiarities are mentioned in trade journals of the day.

Telegraph sets are not code-touch sensitive. There is no electromechanical means by which one may determine the personality or gender of a communicant. Yet telegraph operators were able to ascertain who was on the line by sensing their "touch". The midnight fantasies of telegraph operators were filled with strange accounts of sudden anomalous distal perceptions.

These "hallucinations" included time dilations, eidetic joumeys, vivid memories, sudden lucid revelations, bilocations. These signatures of eidetic transactions were common along the system. Dream and eidetic reality soemed a great blur at times. Sleep was effortless. Time lost meaning. Visions merged with messages.

This fundamental empathic signal is VRIL. VRIL floods and saturates the system night and day. The saturation of telegraphic systems with VRIL energies resulted from the moment they were grounded and installed. The blind insistence of engineers (in
superimposing electric impulses upon the VRIL power) did not prevent the VRIL power from continuing to express itself. It was this feature which brought forth all the anomalous activities regularly observed, catalogued, and published. Important eidetic activities flood componentry and the designs which technology employs in other services.

The spontaneous exchange of clairvoyant and empathic impressions was a wellknown experience among telegraphic operators. Night-time eidetic excursions were thought to be the result of loneliness. Participating night- time communicants became mutually clairvoyant and fulty capable of communicating in excess of mere coded transfer: communicants could "know" what the other party was about to say...and even discern the entire content of an incoming call simply through the bell-sounding.

Intent may be holistically transacted through VRIL resonant components.

Intent is an organismic VRIL auric inflection (modulation) which may be conductively transacted through metal lines and ground systems.

The loneliness of the telegraphic outpost was punctuated by sudden and graphically eidetic visions of distant places. The thrilling sensations of bilocational travel made such eidetic imagery the only desired quantity. To communicate. To reach across the silence of the night and call on distant strangers for response. Telegraphers often comprehended the whole of a message through eidetic means.

The telegraphic and telephonic systems did what the Cathectral System in Europe had done for those who frequented them. The use of ferruginous and metal-rich stones transformed natural VRIL ground nodes by architectural enclosure. Telegraphy replaced the need for massive structure and resonant chambers through the use of line componentry. It was possible to enjoin VRIL archeforms and receive revelatory commumions through precise entunement. Powerful eidetic focus was potentially available when ground-plate penetrations were properly emplanted.

Geometric forms of componentry and systems were mysteriously permeated with Gothic symmetries. Componentry of telegraphy and telephony were significantly proportioned and physically disposed in analogous structure (Stearns, Buckingham, Jones).

Single message telegraphic systems may be thought of as "monophonic" tuning instruments. The multiple rate-loading of telegraphic systems is an historical note of great significance in technology. Rheostatically entuned systems were eidetically prescient and intelligent. Multiple rate-loaded systems were alchymycal lenses.

Increased channel handling capability brought with it a new conscious possibility among operators. Singular eidetic transactions could be fine-tuned and magnified through available tuming componentry. Operators could be focussed into singular eidetic worlds through ground nodes along their section of line. This was possible only when ground nodes were actually penetrated by the proper placement of ground-plate assomblages.

Duplex, quadruplex, sextuplex, octuplex...multiplex systems could simultanoously entune several distal eidetic nodes. These systems were multi- iconic. Multiplex systems were projectors capable of permuting VRII into our space. The consciousnessmagnifying possibilities were not fully appreciated. Alchymycal fusion of several eidetic nodes resulted in astounding conscious transmutations among the operators.

Permanent conscious polarizations rosult when eidetic transactions are projected, focussed, sustained, and fixed into a space. Permutations result when multiple entuned eidetic projections are focussed into a space. Consciousness summounts its normal experiential parameters and is magnified to unexpected proportions. VRIL permutations make new conscious elevations permanent.

The duplex and multiplex patents must be properly viewed. These circuits engaged simultaneous conjugate VRIL transactions. No doubt there were better blends than others. Spontaneous transmutative events discharge from the terminals of multiplex designs. The primary effects are conscious ones. Consciousness in a district is greatly heightened when multiple distal nodes are brought into eidetic fusion.

Each patent design becomes progressively "polyphonic". Single line tuners enable the entunement of only single eidetic nodes. The entunement (the "rate") conveys the meanings and empathic components which the ground node establishes. Communicants become active sensory-system components.

Multiple cheostatic designs have been proposed for use in the healing arts as "polyphonic" transactors. Several separate parallel eidetic rates are simultancously and independently applied to a patient in these forms. Total body treatment results from multiple exposure to multiple eidetic nodes. VRIL Alchymy simultaneously infuses space with multiple eidetic projections. Those who enter these spaces are changed.

Communicants mutually perceive intentions and expressions. Telegraphers could frequently "read" the message of those with whom they established line connection despite the click-clacking of telegraphic code.

Exposure to the telegraphic block assembly brings VRIL arcs from ground through floors and into operator's forehead (Stearns). The telegraphic block is an astoundingly focussed VRIL transactor. Visceral sensations include body heat, sharp insensate VRIL focus in forehead, with sharply focussed consciousness for several hours after exposure. Copper supports organismic sensory experience.

The VRIL eidetic beam which proceeds from the tops of telegraphic coils attracts organismic attentions and draw operators to themselves. Contact made with the telographic key is eidetically potential contact.

VRIL world eidetic transaction commences with organismic contact at the key.

Examination shows the simple artifice of hard rubber and brass. These specific minerals and metals provide a rich sensual contact with VRIL threadways. Excessively deep eidetic experiences proceod without interruption. Eidetic images and experiences of all other terminals are excessively powerful through telegraphic block contact. Placoment of metal resonators over vertical coils immensely increases VRIL eidetic transactions.

Telography made total use of artificial inertial code and was an imperfectly utilized VRIL transactor when coded communications were transmitted through the system. Telegraphic systems operated eidetically without applications of detrital powers.

The VRIL resonant bell of telegraphic and telephonic sounders is extremely potent as an eidetic projector. When the VRIL resonant bell was replaced by thin metal membranes a new step in VRIL technology was realized. Bells, membranes, and sounders were all fully capable of projecting holistic content of intended messages instantaneously. The superior eidetic transaction among communicants through telephonic assemblies has its basis in auric transactions.

Telegraphic receiver blocks were housed in specially coated wooden hoods. Their carbonaceous content and geometric form makes them powerfully focussed VRIL eidetic projectors. Iron projects VRIL threads. Fine-spun copper coils were wound upon iron armatures. Carbon softens the sting of iron potential transactivity. Copper transacts visceral sensations. Copper supplies the VRIL sensory system with synaesthesia.

Duplex systems accommodated several distinct meanings simultaneously. Such multiple rate loading did not bring mutual conscious interference. Codes could be collaged and deranged by line-interference. Greater rate-loading capacity of quadruplex and multiplex systems increased the conscious "polyphony". Capacity of multiplex
systems to sustain, conduct, and project eidetic integrity of separate meanings and messages was demonstrated. Multiple eidetic transactions and fusions were excessively potent near exchange terminals and switchboards.

Eidetic transactions of meaningful context remained preserved for each separate conversant. Operators partook of the blending eidetic flux occurring among the terminal components. Telegraphic and telephonic systems glowed black with noumenous VRIL radiance.

Multiplex systems revealed a propensity for numerous ground-plate implantations at terminal ends (Buckingham, Jones, Stearns, Thompson). Only a few designs employed the bold notion of joining all the separate ground lines into one main groundplate (Field). Multiply fused node-loaded lines were controlled by exchange operators. Eidetic fusions permitted the simultaneously meaningful transaction of code and experience in telegraphic systems.

Multiplex systems do not operate because they are resonantly tonal. Multiplex systems are resonantly tonal because they transact VRII eidetic continuities. In material configurations we empirically correlate tonal correspondence with VRII manifeststions. We cannot predict or equate the VRIL tonal resonance of a configuration without eidetic examination. Formulations do not operate because each design is a distinct identity. VRIL tonal conductivities of systems differ completely from simple acoustic resonance. VRIL tonal conductivities of systems differ from simple electrical resonances. VRIL sensitives are devoted to the natural VRIL structures they identify. VRIL sensitives are devoted to componentry which engages VRIL transactivities. Beholders recognize that the very generative source of consciousness and existence surges in lanceolate distributions among special groundpenetrating componentry.

VRIL DIFFRACTORS

There are many patents which clearly operated in non-electrical modes. There are instances in which we carefully discern componentry incapable of delivering effects claimed for electricity. Discovering the native phenomena which VRIL transactively manifests is a plentiful thesaurus. The VRIL thesaurus flooded the Victorian scientific archanum. System componentry is examined through eidetic potentials alone. What may be said of specific componentry requires individual detailed eidetic examination. We cannot make broad generalizations concerning the eidetic transactivity of mate-
rials and material configurations. There are soveral specific examples which may here give aid in comprehending the behavior of telegraphic systems.

Attractions of mind and sense are powerfully collimated through rock massives, mineral rilles, metal lodes, crystal caverns, earth capacitors, aerial towers, ground terminals, and entuned system componentry.

Casual observation may not reveal the surging eidetic transactivity of seemingly static artifices. Telegraphic systems were largely uncharged during off hours. Grounded systems transact eidetically with those who are found in their immediate proximity.

The burial of telegraphic and telephonic cables in deep specially configured conduits provided exceptional transactivity of eidetic worlds among operators. These activities were especially powerful during the night. Telegraph operators were quick to mention the exceptional clarity of signals during the night hours.

Moderate exposure to these structures suffuses the beholder with viscero-eidetic transactivities. These may not be consciously appreciated as eidetic fluorescence. Most persons experience eidetic translations constantly and do not express surprise. Telegraphic stations are noumenous in appearance because they congeal, direct, and a grounded carbon rod at various positions. Each eidetic node in the carbon rod permits specific distal position and angulated view.

Analysis of the term "theostat" has intriguing implications. "Rheos" refers to waves. "Stathis" refers to stationary. A theostat was comprehended as a "wave station". To which waves were the originators referring? The addition of cheostatic components varies the aspect of any individual eidetic experience by permitting sweeping views through the contacted node. These sweeping views are called diffractions.

Rheostats provide diffractive eidetic sweeps of VRIL channelry. Each positional node gives the participant a new eidetic angle. Organismic movement is not required. Rheostats differ according to their material composition and geometric form.

Slide-contact cheostats reveal the longitudinal disposition of eidetic nodes in a material volume. Carbon, nichrome, osmium, and tungsten are among some rheostatic materials. Each selects specific eidetic population characteristic of the material substance. Careful and sensitive variation of slide-contact position permits diffractive eidetic sweeps of a local VRIL channel view without operator motion. The VRIL sensory system experiences what the eidetic sweep reveals. Positions may be held fixed in time for detailed examination (Buell). VRIL op-
erators manage the spontaneous entumement of specific nodes. Experiential knowledge of distal ovents and circumstances may be apprehended by thee means.

Contact-filters are required for ease of organismic transaction with substances. Granulated carbon, iron, and manganese dioxide powders have been successfully employed to these ends. This mixture may be mixed with plastic or paint substrates and brushed on glass surfaces. Such filters ease the transactive transitions on behalf of the operator.

Most rheostats utilize a rod of carbon which has been end-grounded. Slide-contact provides node transaction which necessarily involves all. Rheostats provide diffractive eidetic sweeps of VRIL channelry. Each positional node gives the participant a new eidetic angle. Organismic movement is not required. Rheostats differ according to their material composition and geometric form.

Slide-contact theostats reveal the longitudinal disposition of eidetic nodes in a material volume. Carbon, nichrome, osmium, and tungsten are among some rheostatic materials. Each selects specific eidetic population characteristic of the material substance. Careful and sensitive variation of slide-contact position permits diffractive eidetic sweeps of a local VRIL channel view without operator motion. The VRIL sensory system experiences what the eidetic sweep reveals. Positions may be held fixed in time for detailed examination (Buell). VRIL operators manage the spontaneous entunement of specific nodes. Experiential knowledge of distal events and circumstances may be apprehended by thee means.

Contact-filters are required for ease of organismic transaction with substances. Granulated carbon, iron, and manganese dioxide powders have been successfully employed to these ends. This mixture may be mixed with plastic or paint substrates and brushed on glass surfaces. Such filters ease the transactive transitions on behalf of the operator.

Most heostats utilize a rod of carbon which has been end-grounded. Slide-contact provides node transaction which necessarily involves all the other nodes along the rod length. Material configurations in which numerous projections are individually grounded through theostatic connections are noteworthy eidetic transactors Little). Each cheostatic eidetic node is separately grounded and activated. This design permits individual strong contacts which are not eidetically diluted by passage through all the other nodes.

Rheostatic components made excellent excessive use of carbon (Edison, Rosebrugh).

Anomalous terminology was used by inventors to describe rheostatic action on static conditions (Buell). Tumable bridge rheostatic components reveal the nature of eidetic transaction and static formation (Stearns). Strong rheostatic contact provides strong eidetic experience. Least electrical resistivity is associated with closest eidetic view. Great electric resistivity is associated with furthest eidetic view along a VRIL channel. This empirically determined inverse correlation is significant.

Eidetic diffractive transactivity inversely determines electric conductivity. The strictly electro-detrital operation of componentry is an artificially forced condition. Technological designs are VRIL designs in their fundamental being. Electri-detrital activity is understood through VRIL reactivity in materials. Several dosigns employed special matorials for the reduction of "line static".

Experiential static is the true spontanoous source of electrical static production in a line. The eidetic principles are pro-detrital (pre-electrical) in nature. Eidetic transactivities are spontaneous and continual in VRIL Space. Natural ground and material eidetic nodes spontaneously produce static constantly. The production of static strongly correlates with spontaneous eidetic transactivities...but static production remains typically weak in comparison with the eidetic potential. Static appears in several dosigned instances.

Systems inadvertently sharply entune and fix specific singular eidetic nodes to release static detritus. Certain grounds are composed of inertio- absorptive matter (halides, carbonates, silicates). Such grounds should not be entuned sharply. There are ground massives in which static never appears.

Such grounds are specific mineral-rich districts whose structure and composition are strongly eidetic and which dissolve detritus ("static").

Systems which enjoin improperly connected eidetic ground nodes invariably are plagued with "static" detritus. Enterprise did not concem itself with proper placements and geomantic considerations. Systems were improperly erected in the great rush westward. Telegraphic stations were plagued with static when ground-plates were sunk into the wrong spots.

Samuel Morse experienced this phenomenon when attempting the first telegraphic lines. Ground-burial of cables was the initial plan. This project was quickly abandoned when so much static suddenly appeared that signalling was impossible. The aerial erection of guidelines was the solution. Aerial guidelines were sometimes
plagued with static at odd intervals. Weather and wind had littie to do with these spontanoous appearances. The auroral activity could not be cited in these persistent episodes of static congestion.

The anomalous appearance of "static" along buried cables is electrically problematic: grounded objects are supposed to lose charge. Aerial elevations spontaneously "acquire charge" though well grounded at every interval. Therefore charge is the detrital residue of a more fundamental energetic transaction. That energy is VRIL.

Dr.G. LeBon provided experimental evidence for the spontancous appearance of charge and of radioactivity in matter. His solution did not glimpse the secret truth concerning the manner in which consciousness interacts with matter to produce strange inertio-physical manifestations.

VRIL is the vast consciousness of which we partake. VRIL continually interacts with its own projections. Minerals and metals display strange spontancous effects in apparent absence of cause. The "instability" of radioactive nuclei is the commonly cited explanation. Tesla suggested that external bombardment caused dense nuciei to explode. His suggestion that space-generated aetheric particles impinge on matter is notoworthy.

Eidetic transaction is the VRIL projection of conscious worlds into inertial space. Projected materials impact inertial space in various exhibited manners. Certain minerals, metals, and organic substances absorb, disperse, accumulate, densify, and project inertial detritus with their cidetic projections.

All material displays and their effects on the inertial space may be comprehended by recognizing that matter is a conscious projection. The vastness which is VRIL projects, generates, and sustains matter and space. Original VRIL matter is mysterious. It may be that many commonplace observations are the direct effects of VRIL original matter.

Ground node connections instantly load systems with inherent meanings and message. These may be entuned with fine precision. Additions of "signal clarifiers" enhance eidetic projectivity of VRIL nodes. The empirical design and efficacious use of specific components was developed throughout telegraphic history.

Componentry cannot be reduced to functions. Componentry must be eidetically studied according to forms. Each form, each material, each orientation gives distinctly different eidetic experience to the examiner. Round clear glass plates differ entirely from squared glass plates. Metals completely differ in their eidetic projections when used in
capacitative forms. Variable parallel plate capacitative forms (baffled) eidetically differ from rotating vane capacitors.

The technological garden afforded VRIL Design is exceedingly prolific. VRIL Dosigners should be glad to recognize the distinctive and individual identity of each item, object, and form. VRIL Science requires careful and detailed empirical account of each separate component.

Strange vortexial cheostats were empirically designed to block the "static discharge" (Field). Tunable wire coil theostats were employed for "balancing the line" to eradicate static (Buell, Little). Rheostats permit adjustments in proportional balances between VRIL transactivities and inertial reactivitios.

Variable vane-capacitors provide sweeping and clarified eidetic views specific to their material composition, geometric form, and physical disposition.

Grounded variable potentiometers offer rotational eidetic views in the vertical plane when aligned perpendicular with local VRIL channelry.

Vertical carbon rods brings eidetic sympathy with formative worlds. One experience the forest-like presence of glowing black cylindrical forms. Slide- contact carbon rod rheostats must be held in flush ground contact for distinct eidetic nodes to appear. Each gives sweeping horizontal view of distinct VRIL channel positions. Angulations along brancated surface threadways are distinct and positionally fixed with regard to component sweep.

The conductive use of substances to provide "slower signal speed" is anomalous. A small section of resistive material does not slow signal speed or store signals as in the manner of loaded transmission lines. The use of water as a message-retarding medium is an anomalous patent entry which is nonelectric in principle (Hughes). Water does empirically inhibit, densify, and retard eidetic transactions: this is the true cause of the observed effect on electro-detritus.

All discussion which deal with capacitors and batteries begin with Galvani. Luigi Galvani demonstrated the organismic influence of separated dissimilar metals. Projected strains are sensed in the space between dissimilar metal plates. Proper ground emplacement and plate alignment enhances these vitalizing strain components.

Galvani did not deal with detrital fragments. Galvani especially strove to eliminate such static effects from his arrangements. He equated dangerous detrital components in both thunderstorm conditions and static electrical machines long before Franklin's demonstration. His fair weather observations mention the fact that "...metal
plates, aerial terminals, and grounded lines yield sudden, powerful, thrilling shocks...which do not register on the most sensitive gold-leaf electroscope...".

Luigi Galvani described the visceral effects displayed through various spaced motallic arrangements. These were "thrilling...vitalizing...joyful...". Though powerful and impressive the eidetic projections of matter and material configurations are the most fundamental powers ... exceeding the visceral effects.

Galvani did not report these eidetic phenomena. No doubt he and his assistants roceived them. These would not be part of the experimental record. Anecdotal comments made among the experimenters would include sudden "visitations" of memory, impression, color, mood, and conscious translation. Perhaps most trained observers do not allow themsolves the luxury of reporting their every impression, mood, thought, and vision.

Approaching large nonpowered electromagnets produces immediate visceral sensations of sharply focussed vision. Visceral non-acoustic tones are pronounced in the immediate space. Strong diaphragmic oblations camnot be ignored near these structures. Why did not Joseph Henry report these overwhelming effects? Academic Science forbids, limits, and retricts sensation.

Such empirically transient impressions form the strong and valuable part during experimentation. VRIL empirical science stands upon the native phenomena which appear during experimental procedures. Perhaps the prolific amount of such impressions was denied by experimenters whose minds were overcome by them. Perhaps there were those voices which sought to eradicate these eidetic impressions from science altogether, claiming them to be the mere "wanderings of undisciplined minds". Replacing empirical participation and eidetic impressions with meters and statistical analysis has not achieved more humanly valuable knowledge.

The question which designers will address concerns itself with classifying the Galvani designs: are these batteries, condensers, or capacitors? Difference exist among components whose original namings retains the truth.

Capacitors and condensers are not identical. Capacitors and condensers perform different functions when properly empowered and utilized. Capacitors are geometric material dispositions which sustain an energetic flux. Capacitors act as valves and gateways of other worlds. The capacitor is a flowing reservoir.

VRIL capacitative transactors behave as
wells, reservoirs, and fountains. VRIL transective surges flood the design configurations and project VRIL eidetic experiences through districts and regions: these are sensed in absence of material contact when properly arranged. Capacitors act as experiential terminals and as eidetic retinas for communicants.

VRII capacitors are connected directly with ground and interlink aerial with ground: they are flowing reservoirs. Capacitors permit modulations and modifying influences. VRIL capacitors behave as valves for eidetic transections. Such designs remain fixed as stations having specific positional alignments.

Several capacitors in the patent recond are anomalous in form, composition and function. There are many capacitor-varieties, configurations, and symmetries. Some capacitor designs were strange hybrids of resistors, accumulators, condensers, and earth batteries (Muirhead, Smith).

Capacitors may be made with dissimilar metals (Galvani). Some took the form of organically coated ducts (Taylor, Muirhead). Capacitors may use minerals and salts (Meinke, Bradford). Capacitors may use vegetable matter, germinating seeds, and green moss (Mesmer).

Special capacitors and conductive arrays enjoined telegraphic and telephonic systems to the ground (Muirhead). Special capacitors and formularies for preparing them include organic pastes and metal powders made to balance the line (Taylor). Viscerotonic effects of VRIL capacitors are notable. Capacitors were designed which acted as intensifiers of eidetic transaction (Vassilatos). Certain capacitor designs greatly collimate and intensify eidetic signals.

Sharp experiential axes transact meaning and code transfers. Capacitors are VRIL active only in specific alignments. Their plates must be parallel with the existing :VRIL channelry in a district. Capacitors are flowing eidetic transactors and transformers. Capacitors give special tunnelled tensions when dissimilar metals are used.

One experiences remarkable transformations of immediate surroundings when horizontal dispositions are used and eidetically examined. Zinc horizontal multi-baffled capacitors (air gap) reveal a wintry night world of wonderful snowy starlight. One is eidetically translated up from the ground into the twinkling tufts of penetrating luminous white in varying elevations. Positioning of the plates effects and fixes experiential elevation.

Such experience is comfortable, close, and secure. There is every sense of a comforting presence on all sides...hopeful vision
of desire in spaceward directions. Such horizontal baffled zinc plato-capacitors were. used in wireless apparatus for good reason. Eidetic access to upper space was instantaneous and strong. Strongly elevational eidetic reactivities are produced in parallel plate capacitors when grounded.

The closing of plates intensifies eidetic content with controllable variable elevations of view. Various VRIL capacitors increase the visceral tones of whole surtoundings: pure visceral (non-acoustic) tones are heard louder and highly clarified across a volume of space. This condition also succeeds in drawing sounds of the environment into a focus about the capacitor plates.

Capacitor plates may be grounded. Varietios of aerial or earthed metal plate combinations will reveal unexpected VRIL reactions (Bear, Shoemaker, Murgas et.al.). VRIL active capacitors may be constructed from various materials (Mesmer, Galvani, Reich, Theroux). These designs must be aligned with dissimilar plates perpendicular to VRIL channelry.

The copper plate must face us when copper and rinc is used. Right hand holds copper...left holds zinc. Vague eidetic image of forest periphery in black bloom (during winterf). Amazing result obtained by singing into the plate duct. Capacitor gave sudden strong eidetic images of the far forest wall. Images fade in a few seconds until reactivated by a whistle or vocal utterance. Pitch effects verticality of eidetic view. Higher pitch goes vertical over the eidetic ground node. Angle of view decreases with decreasing pitch. VRIL transactions may be magnified and modulated by organismic intonations. VRIL supplies the projective consciousness.

Capacitors become eidetic-transactive through VRII thread connections. Eidetic power develops "static" in capacitors through spontaneous VRIL transactions.

Tesla superimposed electrostatic impulses upon the eidetic supply of the capacitor. Kilner, Tesla, Reichenbach, Abrams and others discovered that electrostatic and magnetically impulsed capacitors released greatly expanded eidetic transactions throughout the surroundings. The eidetic causes generate the "electric" effects.

Varieties of capacitors release differing energetic species when viewed eidetically. Eidetic images vanish when capacitors are mildly charged electrically. Positive copper plate faces the operator. Powerful eidetic journey commences when tones or vocal expressions are directed into the plate duct toward the ground. The most astonishing eidetic wandering along certain VRIL threadways is experienced. Visceral effects
are instantaneous in the hands and arms and persist for several moments thereattor.

Vacuum tubes as capacitors must be VRII channel aligned. Pins must face the operator while operator faces the VRIL channel source direction. Sudden highly collimated eidetic tumneling commences toward the horizon. One journeys eidetically through a very highly projective threadway as far as can be sustained.

Glass plate capacitors give eidetic projections which are metal dependent. Touch contact along their lengths gave progressive distancing from the origin contact-point. Zinc plates separated by clear glass give progressive black ground horizons of position out and away from the contact point. Aluminium fixes progressive eidetic projection horizons out into the bright whitened sky.

Scroll-wound capacitors permit directionality of eidetic experience only when physically rotated with respect to the ground. They do not permit eidetic translation through eidetic node contact alone. One must move these devices through space as probes. Vertical positioning brings irritating inertial flux into body but reveals environmental realities not apparent with the 5 -sensors.

Scroll-wound capacitors give bilocations.

Electrolytic capacitors project a powerful insensate VRIL thread along axis where pointed. Threads do not permit eidetic participation. Excessive back-inertial flux causes operator certain irritative pain. Small electrolytic capacitors produce high-pitched visceral tones. Larger ones provide mild focussed bilocations out to local ground nodes.

Condensers are specific designs which resemble batteries. Condensers focus, fix, and hold an energetic condition into experiential space. Condensers focus, sharpen, and clarify specific eidetic experience. Condensers have a special function as VRIL Transmuters. Condensers allows the powerfully focussed fusion of multiple eidetic projections. Condensers may be ground- connected through lines but never groundemplaced. They are made to resist spontaneous transitions which the VRIL environment manifests. Condensers maintain a strict rigor of eidetic entumement for alchymycal purposes.

Condensers are experiential doorways which fix, focus, and project transactions. A condenser is an projective isolator, a reactor terminal where stresses and transmutations remained fixed. Condensers are VRIL eidetic transmutors in which fixed eidetic transmutations may be openly experienced throughout a region.

VRIL condensers are VRIL Reactors.

These are powerful crucibles and lenses of seationt transactivities. It is for these reasons that we conduct leagthy study in archane histories and developments of electro-discharge tubes. In these were arranged mighty and distinct VRIL reactions with district offects.

Batterios are a sub-class of capacitors and condensers. Batteries differ considerably among themselves, and cannot be appreciated according to the electri-detrital products which they produce. Galvani's acrial terminal batteries and space-batteries produced no electri-detrital products at all. Batteries of Volta were radically different from those of Galvani. Galvani politely refrained from criticizing statements by Volta contrary to this effect. Galvani pointed out that his own designs vivified...and that those of Volta caused pain.

The Volta battery is a condonser which utilizes brine to fill the space between dissimilar metals. Metal plates touch in the Volta condenser. The Volta condenser produces copious amounts of detrital products (electric charge) and offers mild eidetic transaction only at the positive pole.

Batteries may be ground emplaced. These "earth batteries" use eidetic ground nodes themselves as the material which fills the space between dissimilar metal plates.

Interleaving ground manifolds are ground-capacitors. Ground-plate end- terminals of telegraphic stations are noumenous sites. These designs became the intense focus of inventors in the mid-1800's. Several such forms are given in Volume 4. These ground capacitors are called earth "马atteries" when dissimilar metals were employed. Engineers focussed upon the electro-detrital products of these designs and neglected the eidetic projections which are first encountered on approach. First impressions are soon forgotten by the insensitive and undisciplined!

Earth battery assemblies surround themselves with vibrant visceral whorlings. Vibrant vortices are VRIL surge projections felt across spring fields. Earth batteries enjoin distant empathic communications among the unwary. Earth batteries take on several geometric forms (Dieckman).

Dissimilar metals may be used when properly ground aligned. These enjoin deep eidetic transactions with VRIL channels. Communications of projected experiences are engaged when peering down into their ducted baffles. Properily aligned horizontal ducts often seem to waver and undulate with crenulated black waves. These visceral experiences may be followed by a black radiant projective softness. Contact is not required. Proximity with such ducts brings a some-
times irritating and nervous sensation of heat.

Aerial batteries are special capacitors. Aerial "batteries" are lanceolate terminals made of various metals, minerals, glass, and (rarely) magnets. These compositions are hoisted to a small elevation. Aecial capacitors enjoin project eidetic ground transactions specific to their material form. These do offect district control of weather and viscero-eidetic atmosphere when properly poised. The cavitatation of inertial space has been demonstrated by several researchers (Reich, Constable, Theroux, Vassilatos).

Loading coils as static ncutralizers transact tremendously emotional presence. Visceral (emotive) projections may be sensed for several hundred yards from vertically oriented loading coils.

The discovery that induction coils could reduce lino-static was instantly implemented by telegraphic systems everywhere. Theoretically these should not help vocal linotransmissions. In addition to these staticblocking inductors, numerous line shields were employed (see Volume 6: Dann, Lapp). The sudden and spontaneous clattering of code unnerved several telegraphic operators.

Eidetic transactivity passes unnoticed by most. Eidetic surges become physically manifest on rare occasion.This mysterious and spontaneous natural language would commence with several telographic signals. Telegraphic receiving blocks would respond to these powerful signals for long periods of time. Operators frequently were required to disengage from the line service until the anomalous encounters subsided of their own accord.

These episodes were not always associated with thunderstorms, dry windy conditions, or snow falls. They persisted during fair weather on certain lines.

The greatest objection to a purely electrodynamic solution lies in the fact that telographic lines are numerously grounded systems. Every station had its own baffled ground-plate assembly. These grounds were solid and conductive. If static accumulation had formed in the line, then grounding could disperse the "charge" in one close of the switch. Static accumulations sometimes drive the code transfer of telegraph circuits. They sometimes block them entirely: the chronicles tell us they do both at different times.

A second objection deals with the problem of intensity. Telegraphic blocks require some degree of electrical power for the transfer of code. Static does not supply this power. Generative sources necessary to sustain continuous automatic "false signalling" must exceed the power of static. Static is not the
cause of the problem. Static is the effect of the problem. Calculations do not indicate fair weather influences sufficieat to accumulate such charge. Furthermore, calculations and formulations were largely developed by empirical observations: the formulae fit the condition. They merely cite the effects and do not sufficiently explain the generative cause of the problem.

Station managers cited the intense auroras and dry windy seasons for these unusual conditions. Were the sources of these detrital accumulations magneto-electric or frictoelectric? A third problem persists in numerous reports of the "self-powered lines". Several company lines had disengaged themselves from battery power altogether for years. The registered currents were sizable and had no reasonable explanation.

Static accumulations are not generated by inertial means at all. Inertia does not generate inertia. Inertial space is a closure: an effect which requires initiation.

Static is generated when eidetic transactivity reaches surpassing crescendi. Aurorae and other meteorological conditions may themselves contain eidetic messages. All inertial manifestations are caused by the findamental agency of VRIL.

Natural eidetic projections are constantly mutually self-transacting. Telegraph lines often were improperly ground-omplaced. Tuning the grounded assemblies of specific telegraph stations gave aid to the individual operators but created an eidetically imbalanced line condition. Eidetic oscillations experientially occur in recipients who are in line-contact with different VRIL nodes. This situation may occur when improper ground connections have been made.

The oscillatory eidetic experience engages the recipient in defined eidetic undulations...from one horizon to another. Speed of these eidetic oscillations varies with ground nodes and line orientation. We cite visceral experiences with train tracks and the sudden "glimmerings" which drag the eye rapidly up and down the track at odd intervals and with variable pattems. The experience can be painful when eidetically engaged.

Static conditions follow natural eidetic transactive events. We observe geo-regional correspondencies when these eidetic surges occur. Several choreographed events are repeatedly chronicled during these episodes: solar flares, sumspots, aurorae, meteor showers, earthquakes, floods, storms, and a host of other correlated phenomena. These events infrequently take place in grand crescendi. They occur in moderate expression with certain periodicity continually.

Eidetic mis-matched ground-plates cre-
ate eidetic undulations of specific periodicity. These eidetic undulations produce experiential drifts. They disturb consciousness when severely mismatched. Eidetic undulations are potent. They disturb consciousness and inertial spaco.

Eidetic undulations are not clock-rogular. Each eidetic sweep impacts inertial space. Cavitations of inertial space release detrital products. Iron is an element which absorbs inertial detritus when grounded. Iron dissolves inertia only when grounded. Telographic lines were made of iron. Iron lines absorb inertial detritus into the ground.

Eidetic projections emerge from ground and spread along the wise away from each mismatched station. Projections impact space and generate static. Normal static accumulation in this process is handled by the groundplatos. Inertial space is impacted when each eidetic projection sweeps the line. Inertial detritus accumulates between the sweeping eidetic projections and is alternately pulsed from station ground to station ground. These sweeping accumulations may reach excessive thresholds.

Such repeated cavitations continually charge the line with "static".

Chronicles which tell of line disengagement effectively convey one solution to the static problem. Disengaging the line from the ground node misplacement stops the eidetic undulations. Static ceases.

On rare occasions these eidetic nodes surge and flood space around the lines with cavitating projections. Switch spaces remain ensheathed in inertial cavitation. Observations of leaping blue-white sparks among the station switchworks were reported often.

Static is developed in telegraphic lines when eidetic nodes do not concur. Eidetic reentunement and transaction clarification via capacitors produced correlated empirical effects in telegraphic electrical operative modes.

Helices were employed to "reduce static" (Seldon). How this is electrically possible is suspect. "Choke" coils block electrical impulses discharges; but static continually leaks to ground. Chokes do not prevent leakage.

Eidetic examination reveals that inductors produce eidetic tunneling action. Loading coils and static neutralizers proved to be powerful inertia- neutralizing dissolvers along communications lines because of their primary eidetic tunneling effect. Loading coils are static neutralizers because they powerfully focus eidetic projections from ground nodes. Inductors are powerfill iner-tia-neutralizing dissolvers along communications lines because they collimate VRIL transactions (Smith, Variey, Lugo). Increased meaningful eidetic transactions are enjoined
by either coils or capacitors. Each are noted for their "clarity of signal" and may be property combined to promote special transactions. The portrayal of component combination is problematic to the VRIL designer.

Fine wire coils focus, tunnel, propel and clarify eidetic experience.

Telographic receiver blocks were mentioned previously. These inductors were potent eidetic projectors. The use of iron cores and copper windings were a powerful combination. VRIL guides the design of componentry toward the preservation of conscious context and meaningful continuity; without which systems become inoperative.

Electrical transformers are primarily eidetic transactors. Transformers and inductors should be made with various metal articulations for use in eidetic applications. Copper should not be the only coil material mass. Organic matter can be used in such instances. The use of water and helical pipelines serves as an eidetic conducting mass (R.Clark). The use of crystal loaded waterhelices works as a powerful eidetic projector (M.Vogel).

Nonpowered transformers entune VRIL when properly directed. Transformers entume VRIL projective eidetic transactions. VRIL travels through the iron cores of transformers. VRIL entwines the iron yokes of inductors. When these components are properly aligned (perpendicular to VRIL channelry) they may be enjoined for exceedingly focussed eidetic translations along paths which seemingly do not end. Fine the copper windings enjoin strong and accelerative eidetic translations.

Remarkable natural tonal phenomena were made audible when telephonic receivers replaced telegraphic blocks. The musically "jangling" tonal line noise in telephony gave new depth to the mystery. These sounds were not sourced in the tonal opening and closing of metal relays. What power could induce musical tonalities in a line? Static caused crishings and sizzlings...but not janglings. Recordings of natural VRIL visceral tones have been made (Theroux, Vassilatos). All these complex harmonic species are forever manifesting themselves in the ground.

Engineers believed that the geo-magnetic field surrounding the telephone lines could induce "rocking" impulses into a windswept line. These were said to generate the "janglings". These tonal generations are only possible with only the strongest of permanent magnet fields and the tightest of lines. To generate a series of bell like tones we require bell-like harmonics. Not every line was perpendicular to the geo-magnetic field. Lines were loose and supported every 50 feet
at most. How then does "the wind" enter the line and "sing"?

The disturbing quasi-acoustic "nightvibrations" of telegraphic lines was never satisfactorily explained. Scientific observers discovered that the disturbances which caused line "vibrations and line-hum" proceeded from the bases of telegraphic poles through "some mysterious earth movement...by which great amplitudes were achieved". These line-hums were treated as acoustic vibrations caused by the wind nonetheless.

Such line disturbances produced excessive vibrations in absence of winds however. These disturbances necessitated the development of special artifices to "deaden the sound". Examination of these sound-deadening boards reveal that the sounds themselves were not acoustically generated. The portrayed placement of patented sounding boards on telegraphic lines as could not possibly effect vibration absorptions or nullifications. The passage of VRIL eidetic transactions through iron lines is deferred by the placement of organic deflectors having sinuate guide paths.

Certain sound-deadening designs are problematic (Connor). Examination of one such patent provides a mysterious chue to the source of night telegraph- line vibrations. No such block mounting can suppress line vibrations. If this were true then any weighted block could stop the vibrations at any support point. Furthermore, telegraph lines were loosely strung...and suspended every 50 feet or less. How then did "wind" manage to generate sufficient mechanical force to make telegraph stations "hum like an organ pipe"?

What this patent demonstrates has much to do with the actual vibratory source and the sound species which is in question. These sounds could not possibly have their origin in strict mechanical vibrations. The only way to nullify a vibrating line is to deaden the vibration of whole line lengths.

Line vibrations would continuously permeate the block itself and transfer acoustic sound into the stationhouse. Such an organic block design operates because it modifies a non-acoustic energy. Experiments were performed with bent wires which were grounded to provide strong eidetic transactions. The identical bent metal wire was sandwiched between wooden block (one free terminal grounded again) failed to give the same eidetic representation: deferring the otherwise deep groundward direction of consciousness into a starry region of space. Such deferment of eidetic transaction results in reduced VRIL-induced line vibration.

These block designs dampen eidetic transactions. The sounds stop because the
transaction is deferred and altered. These sounds reached crescendi during the earty morning hours and conform with our observation of the telluric sounds which flood enclosures shortly after midnight (2-4 A.M.). These sounds are viscero-organismic, nonacoustic, and are beneficially permeating.

Grounded component assemblies increased eidetic transactivities with sharply focussed clarity when properly engaged. Circuit designers eahanced ground connections by employing coils, capacitors, meostats, and special dosigns to ground plates (Field, Jones). The use of capacitors or inductors provido especially focusses eidetic tumnelings. Coil tuners to ground, capacitor ducts, and cheostatic tuners to ground were doveloped for "reducing static" and enhancing signals (Jones).

Special capacitors and resistors had been
combined to produce effects on coded transfer. Eidetically these combinations were not transactive. Special combinations of resistors, capacitors, and inductors had been assembled to achieve stronger code transfer (Varley). Certain of these component assemblies were so viscero-inertive that human contact with them was disturbing.

These innovations were part of the movement toward code-only systems. Their eidetic transactivity blocks the human organism and prevents normal meaningful transaction. Code is there...but fluidity of meaning and eidetic entourage is missing. Eventually machines did all the code transferring as operators were eventually excessed.

Other dangerously inertifying combinations of iheostats, capacitors, batteries, and condensers began to emerge from the halls of design. The more complex the circuitry...the
more code-oriented the system became. These combinations altered the telegraphic arts completely and made them do- humanized enterprises.

Telephony appeared during this time. The golden age of telephony transactivity and discovery lasted until Stubblefield made the very first vocal ground transaction 40 years before Fessenden. The telephonic transmitter did what telography could not do: it permitted direct eidetic transaction among persons. Eidotically they were impediments to human conscious transection.

The design of eidetic transactors is an artistic process..not an engineoring problem. The characteristic of all VRIL systems is that their components harmonious blend to project powerful eidetic transactions on behalf of operators and operations.

Den Unterschied zwischen einem bestrahlten und unbestrahiten Aluminiumring zeigt Versuch 9 :

Aus einem Aluminiumblech von 1.5 mm Stärke schnitt ich zwei gleich grofe, mit einem radialen Einschnitt versehene Ringe (Abb. 17). Der gleichen Plattenschachtel entnahm ich zwei photographische Platten und legte die Ringe darauf. Die eine Platte setzte ich. lichtdicht verpackt, der Strahlung der bei früheren Versuchen benützten unterirdischen Wasserader aus, die andere bewahrte ich in der Dunkel-

Abb. 19: Versuche mit Hertz'schem Resonator. Unterschied zwischen einer bestrahlten und unbestrahlten Platte Links: Platte 1, zehn Stunden bestrahlt; rechts: Platte 2, unbestrahlt.
kammer auf. Nach einer Exposition von 10 Stunden entwickelte ich die Platten gleich lang in der gleichen Entwicklerlösung und behandelte sie auch weiterhin gleich. Das Ergebnis zeigt Abb. 19. Die Abzüge wurden im gleichen Kopierrahmen gleichzeitig und gleich lange belichtet, entwickelt. fixiert und gewässert. Die bestrahlte Platte der Abb. 19 zeigt eine viel gröfere Helligkeit als die unbestrahlte, und die gröfte Helligkeit tritt an der Unterbrechungsstelle des Resonators auf.

Abb. 20: Bestimmung der Wellenlănge mit Hilfe stehender Wellen. Abstand der Schwingungsbăuche 3 mm , Wellenlänge 6 mm . Die Aufnahme erbringt zugleich den Nachweis der neuen Strahlung im Sonnenlicht (vgl. Abb. 12 e).

Bestimmung der Wellenlänge mit Hilfe des Lecher-Systems.

Zur Bestimmung der Länge elektrischer Wellen dient häufig das LecherSystem, und es laft sich auch zur Bestimmung der Wellenlänge der neuen Strahlung zwischen Ultrarot und kürzesten Hertz'schen Wellen, z. B. der Strahlung unterirdischer Wasseradern, benützen. Werden in dem Lecher-System elektromagnetische Schwingungen erregt, so bilden sich stehende Wellen. Bringt man das Lecher-System in ein Clasrohr, das luftleer gemacht werden kann, so sieht man das verdünnte Gas an den Bäuchen aufleuchten, an den 'Knoten dunkel bleiben. An Stelle des aufleuchtenden verdünnten Gases verwendete ich bei meinen Versuchen photographische Platten. Diese wurden an den Spannungsbäuchen geschwärzt und man kann so unmittelbar die Wellenlänge feststellen.

A MYSTERIOUS ORE By

1)R. s. リl:T"

The suthor came to know of the existence of an electric stone" in the hills round about Bhilwara in Rajesthan. The author was told that this stone has the extraordinary property of conducting electricity and due to the presence of this stone in thg Bhilwara area it was claimed that neither Bhilwara no the neighouring villages have ever heen struck he light ening (thunder) even in the midst of rainv season The author, as a chemiss, knew that most of the paturally oceurring stones are perfect insulators, for example marble, alabestor, slate, granite, silimanite etc. To taste the extraordinary property of this natural occurring stone the author procured about 25 kilograms of stone from the Bhilwara area and he examined the physical, chemical and electrical properties of the stone.

Physical and Chemical Nature of the Stonc.
The stone is a grey-coloured crystalline substance with a steel grey metallic lustre found in the ignious rocks (buff coloured granite) of the Aravalli range of mountains. Its specific graviry is quite high and varies berween 6.8 and 7.2. Its meting point is about $11000^{\circ} \mathrm{C}$, and the molten substance on cooling solidifies to the original crystalline material, the size of its crystals depending on the rate of cooling. The crystals belong to the cubical system the rock is polycrystalline, and the dimensions of the crystals of the original rock vary between 0.12 to 0.24 mm . on sides. The bed-rock of the stone is a buff-coloured granite, which is usually the principle rock of the Aravalli range of mountains. Normally the colour of the stone is steel-grey, but in some specimens, particularly those containing larger erpals, the colour is smokey-grey, slate.grey or almost black. The hardness of the stone is about 4.5 on Mohr's scale, making it almost at par with such hard substances as quartz, garnet, agate, chalcedony and topaz. Photographic reproductions of the stone are

shown in Plates I, II. In Plate III, the stone is shown with portions of the bed-rock (buffcoloured granite), attached. Such ingress of granite matrix within the crystalline stone is a fairly common phenomenon, and is what can be expected in view of the crystalline stone having grown out of a molten ignious rock like granite by the normal process of crystallisation. In an uncut and unpolished stone however, these two different materials are difficult to distinguish, as they have practically the same colour in the freshly fractured surface.

Chemically; the stone is an argenti-zinciferrousgalena, containing lead sulphide as the principle ingre-

ÆTHERFORCE

APRIL, 1922

SCIENTIFIC AMERICAN

demonstration of these phenomen by ap-

Fig. 2. Once You Have the 8traw "DeWrist Riaged yo on then or Even the Move. Wrisk, Then tha shadow or Even the MoveWatched Closely in Front of a Square. Ruted Paper. This is Your "Thought Waver" Detecter and Indicator.
paratus not available to the laity. Telepathy is in disrepute and the scientifically minded psychologist duesn't believe it. Science demands that phenomena should be objective, capable of reproduction at all abie of reproducion at all
times and demonstrable times and dernonstrable ion.
The simple scientific method which I shall present shows that spiritistic phenomena are independent of disembudied spirits and referable to human ame reierable to human as a means of disocculting the occult and will enlist the genius of the multitude in curfoborating my original investigations.

The sct Either side of the Wind-pipe in of in electr. the Two Black Marks Show, ridu. its invtocated the Right and Left d. the Needle Movements Show le: and When They Are DeMovenments Are Greater.

We anticipate that this article will create a sensation in scientific circles, as well as with laymen, and we present it for what it is worth. We have not made any of Dr. Abrams' tests, and we print the article with an open mind-neither endorsing nor condemning it. We say with Shaikespeare: "THERE ARE MORE THINGS IN HEAVEN AND EARTH. HORATIO. THAN ARE DREAMT OF IN YOUR PHILOSOPHY:"

Dr. Abrams is well known as a scientist; he has made this interesting subject his life work, and his views are endorsed by many prominent subject his life work, and his views are endorsed by many prominent doctors and scientists. He is the author of numerous worate book:-"New. Concepts in Diagnosis and Treatment."

Will our readers please advise us.should they be successful with Dr. Abrams' experiments? -The Editors.

Tmepathy.-Derived from tele, at a distance and puthos, feeling, it signifies that one mind (apent) can, influence another miad (percipient) without the agency of the recognized organs of sense.
Brain-Waves: are an iactuality and like light and the impulses of "wireless" are conveyed hy the ether.
The Electroir Theony shows that the ultimate constituents of matter are clectrolis or chargfs of electricity and that Radio-Activity is dependent on ethereal disturbanced by a changerin motions of the electrons.

Amimal Replexes.- When the pupil of the eye contracts to light it is a Replex and involuntary.| Thie reflexes surpass in sensitivity any instrument devised by science and show that Radiation is a universal property of matier. The perceptive structure of the eye (Retina) is 3,000 times as sensitive as the most rapid photographic plate and the nerve of vision (optic), 2/5 of an inch in diameter contains 500,000 to 800,000 insulated fibers.
The electro-magnetic waves in "wireless" demand an exciter, but the sensitive human reflexes first utilized by the writer in delecting energy make an exciter unnecessary: the revolutions of the electrons alone substitute the exciter.

The Heart. - The writer employs this muscular organ among other reflexes for converting energy waves into a sensible form. it is coincidently a receiving station and
hand dependeat from the side of the table (Fis. 2).
Exprebsent 1.-Solving the mystery of

Fig. 3. Arranqement of "Perclpient" to Show the Electrical Efiect Created By Concentration of Mind By the "Agent." Even Tho He (or She) Be situated Forty Miles Away. A Wire Connects the wParcipient"
mind acting upon mind by brain waves trueirsing the ether.

Prove that the brain wave-theory is correct despite the fact that, telepathic effects unlike other forms of radiant energy do not vary in intensity according to distance. The moment a person (agent) Vills Forcibly (not mere thought) there is a slight hesitancy or retardation of the straw. Close observation shows a slight extra kick of the latter followed by 2 transitory stop (inhibition). Each time the
also a detector of etheric thought waves. Technique.-The percipient must have a regular and comparatively large pulse and must be seated in a comtortable chair facing the geographical West. Colored wearing apparel must be avoided by agent and percipient: the latter's eyes must be closed to avoid distraction, breathing regular and mind abstracted during all observations. Experiments should be executed primarily in daylight. All reference to the pulse, refers to the movements of the straw connected to the percipient's pulse. Find the latter (Fig. 1) and indicate its location with latter (a pencil.
a pencil. very small piece of adhesive plaster and roll it so that the roll presents an adhesive surface on both sides.
Fig. 1.-X indicates the site of the wristpulse.
Fix it parallel to the pulse. To the plaster altach one end of a very fine straw (from as broum), $6 \frac{1}{2}$ inches long. Place the straw at an angle so that it will approximate a shect of ruled paper (vertical lines).
Fig. 2.-Position of arm with straw attached to the pulse.
Observe the swing of the straw directly or as a shaduw. In the latter event, if the ight is from the South use the right and if hrom the North, the left pulse.
Note that the greatest amplitude of the traw is secured ly the arni resting comfortably on 2 book or cushion with the
agent wills in the direc-
tion of the percipient (irrespective of
distance), the pulse effects may be noted. distance), the pulse effects may be noted. Before each act of willing by the agent, at least 10 seconds must elapse to permit the percipieat's heart to recover from the excited refiex. The latter is easily exhausted by too much experimentation on the same subject. If several persons are present,

Fig. 1. The Mark "X" Indlcates the Site of Dr. Abrams Aftixes a Smail Plece of Adhesive Plaster, and One End of a Very Fine Seraw. thicir minds should be passive so that the waves from the agent alone will act. Note hy the effects on the pulse that some are able to will nore furcibly than others.
(C'untinuid un puge 345°) pulse but all may do so if Red Matratial is placed oni the areat's. head.
Note the influence of different colurs on intense thought of willing by the agent
Rsi and Yehoow increase and Puaple de creases the effects on the pulse.
Exprinment III.-Showing that concentration of the mind is literally true. To
prove this brain focusing, let the agent concentrate the mind on one of several wooden or paper objects in the room,

The radiations from the hand cause al untraction of the heart (reflex) which is practically telekimesis on a amall scale. Nute
that, with subdued light the entergy frum the finger tips, has a more accelliuated action ont the pulse at a further distance than in the light.
alan is a transfurmer of energy which the receives
that the pulse effects are spreater after expusure of your budy to ant intense light or a current of electricity than befure.
Nute that when several persons grasp hands and one of the persulls presents the of the stumaith of the percipient a greater affect is moted.

Expluinent VIl.-Shouing that polarity is not the exclusive prerogative of maynetic moterials. On either side of the wind-pipe
in the neck, (Fig. 4) are the ri ht and left pneunnogastric nerves. When these nerves ate stimulateal, die necalle muvememes shuw less amplitude and when they are deprest -ig 4 -. lims ind greater amplituce. the negative pole of a like magnet. Th ight and left pneumogastric nervey the Take a har-magnet (held at end withight and left pneunugastric nerves. Note that Yelow Matzalal on the head o
Take a lar-magnet (held at end with body of a normal male or female will re aid aight angles and directed at a! verse the polarity of their finger tips. Tha right angle) and note the fullowing effects of the amplitude of the needle:

Male.
Kight Pneumogastric Nerve-
Positive pole (N) Increases amplitude Negative pole (-) Decreases amplitude
Left Pneumogastric Nerve-
Note that the foregoing refers only the normal male and female. If, in a ma or female, the polarity is reversed, the ma Seuld react like a female and erce vers Sexual inctination is a matter of polari and its determination may thus be demol strated. A mistake in your deduction is serious matter. Note that the extende hnger tips of the right hand of a norm:
male directed to the pneumognstric male directed to the pneumogastric nerv act like the positive pole of a bar-magn the as the fangers of the ieft hand act in opposite holds good in a normal femal verse the polarity of their finger tips. Tha
is, the male will show female and the f male, male polarity.
Cown may thus influence sex tendencies Show effects with the positive or negativ end of any dry cell like with the magnet. Many other interesting experiments wil suggest themselves to the interested experi menter. Kemember, however, that the mos mystifying phenumena rest upon the leas Positive Decreases amplitude Negative lucreases amplitude

Feacale
Right Pneumiogastric Nerve-
positive pole Decreases amplitude Negative.pole Increases amplitude

Left Pneumogastric Nerve-

- Positive
Negative
the harder it is to understand. Observe all the details as sugyested. To demonstrate phenomena whing have heretoior wi patience

ÆTHERFORCE

No. 5,957.
Patented Dec. 5, 1848.

A. BAIN.
\section*{Automatic Telegraph.}

No. 5,957.
2 Sheets-Sheet 2.

Patented Dec. 5, 1848.

uent magnets, as shown in Sheet 1 . These coils and magnets serve no other purnose and do not act in or form any part of the long tele. graphic circuit in which the electric current travels when the marks are making by the carrent. K is a steel-spring carried by the pendalam, the extreme end rabbing gently upgn the sarface formell by the insulated wires in the frame B B. L is a spring fised to the wood frame. Thefree end of this spring presses upon the metal frame B B. M is aslight spring carried by the pendulam, having a pin projecting through the pendulam that presses gently upon the wood frame N. U and V are two metal stads flush with the frame N. W is a permanent magnet. E is a voltaic batters. $\mathrm{T} T$ are sections of the earth. S S is carboll. R $R \cdot R$ are conducting-wires. C C is a piece of clock mechanism, to which the metal frames $B \mathrm{~B}$ act as weights. O P are two pins in the slide-spindle P^{2}. X is a coil of insulated wire suspended by tro insulated springs at Y, to which are attached conducting-wires. W^{\prime} is a second permanent magnet. Z is a spring.
When a commanication is to be made I proceed in the following manner: I first set up the types composing the commanicatiou in the usual manner in a metal frame, which fits into metallic contact with the back of the frame B B, Fig. 2, Sheet 2, with the printing-surface in contact with the back ends of the small parallel wires. In the distant frame B B, Fig. 1, Sheet 2 , will be kept placed two thicknesses of damp paper previonsly saturated with a solation composed of equal parts of prussiate of potassa and nitrate of soda, and at the back of the paper a smooth metal plate, pressing the paper into contact with the ends of the parallel wires and exactly fitting the frame B B. The operator, haring set ap his types and placed them in the frame B B, Fig. 2, Sheet 2, then joins the connecting-wire at X^{2}, and when the pendulams are at the estreme ends of their ribra-tions-that is, when the pins in the springs M M come upon the studs $U \mathbb{U}$ or $V \nabla$-a current is sent through the coils X, which are then repelled by the permaneut, magnets W^{\prime}, and, pressing apou the slide-spindles, releases one pin of the top wheel, which allows the wheels to make one-eighth of a revolution. When the pins carried by the springs MM are off the stads O U or $\mathrm{V} V$ the current is broken, and the coils being no longer repelled by the magnets, the springs $\mathrm{Z} \mathbf{Z}$ force the spiudles
toward the permanent magnets, which releases another pin of the wheels, and by these repeated actions the frames B B continue falling until they reach the bottom of the frames $A A$.
It will be observed that the electric carrent constantly passes through the portion of the small insulated wires contained in the frames B B that may be in contact with the springs K K , except when the pendulums are at the extreme ends of their ribrations, and the springs K in contact with the frames $B B$, and as the spring K in Sheet 2, Fig. 2, will only take the carrent from the short wires whose inner points are in contact with some portion of the type, the carrent will passat that point and no other, and consequentiy the carrent will be delivered at a corresponding point through the paper in the frame B B of Fig.1, Sheet 2, and this operatiou will produce a copy of the printing-sarfaces of the type in a series of small dots in the paper by the electric current decomposing the sabstance and changing the color of the moist chemical compound in the paper.

For simplicity in the representation and references, ouly one conducting-wire and one spring K are shown in the drawings, Sheet 2, as used with each instrument; bat in practice these may be varied and used so as to copy an entire live of types at each vibration of the pendalums.
It is also evident that a copy of any other surface composed of conducting and non-conducting materials can be transmitted and taken by these means.
What I claim, and desire to secure by Letters Patent, is-

1. The copying of sarfaces by the electric current through a single circait of condactors by meaus substantially the same as herein set forth.
2. The exclusiveright to the ase of prassiate of potassa as the mostaseful ingredient in solations of chemical compounds for preparing paper to receive marks formed by the action of electric carrents thereou for telegraphic parposes.

In witness whereof I have hereauto signed my uame, in the city of Washington, this 18th day of November, in the year one thousand eight hundred aud forty-eight.

ALEXANDER BAIN.

Wituesses:

B. K. Morsell,
W. Serrell.

HARRISONGRAY DYAR, OF NEW YORK, N. Y.

IMPROVEMENT IN ELECTRIC TELEGRAPHS.

Specification forming part of Letters Patent No. 1 7,673, dated June 30, 1857.

To all achom it may concern:
Beit known that I, Harrison Gray Dyar, of the city, county, and State of New York, hare inrented certain new and aseful Improvements in the Art of Communicating Intelligence by Electricits; and I do herebs declare that the following is a full, clear, and esact description of my said invention, refereace being hall to the drawing which is hereanto annesed.
The apparatus forming the subject of the present inrention is termed by me an "elec-trepode"-i.e, electric-rord road-and the species of language or form of communication I designate "electrep"-i. e., electric word.

Electric telegraples may be divided into two classes-the copying-telegrapli and the signalizing - telegraph. By the former a skeleton fac-simile of the message sent is made at the opposite end of the line of communication. The principal telegraphs constructed apon this principle are those of Bain and Bakewell. They are founded apoir the fact that a carreut of electricity has the property of decomposing various chemical substances, and consequently of discoloring or producing a stain apon paper prepared with such sabstances through Which the electric current is passed. Hence if a sheet of an electric conducting material baring the characters or letters of a message written npon it in some non-conducting material or ink be connected with some soarce of electricity and be passed in the direction of thie mriting and at a given speed beueath a style attached to one end of a main condact-ing-wire extending between two points, the continuity of the electric carrent proceeding from the sheet of conducting material to the main conductor throagh the style will be broken as often as the non-couducting ink of any portion of any written character passes beveath the style, and if there be a style at the opposite end of the main conductor under which a sheet of chemically-prepared paper is passed at the same speed as the sheet of nonconducting material, the paper will be discolored in those portious which pass beneath the style while the electric current is passing, bat will be left of its original tint at those parts Which pass the style while the electric current is broken by tho interrention of the ink of the letters of the message beneath the opposite
style. If the styles are pointed, each will describe a line upon its respective sheet, and the first passuge of a message beneath the first style will be followed at the other style by the formation on the paper of a line of disconnected dashes separated by dots of the original tint which correspoud in position with the parts of the letters of the message which passed beneath the first style. If the message and paper be passed and repassed a number of times beneath their respectire styles, and if at each repassage the two be shifted a slight distance transversely to the direction of the writing, the message will be reproduced upon the paper in skeleton letters formed of dots of the original tint separated by discolored dashen.

In some cases the process has been rerersed, so that the skeleton letters are formed of discolored dots apon a ground of the original tint. In either case each letter or character of the message reqnires a number of changes of the electric influence, or the trausmission of a number of short electric currents, to give the corresponding skeleton character such a form as shall distingaish it from other characters or letters. Hence it has been customars either to pass the message a namber of times beneath one style or to pass it onco beneath a namber of styles extending in a series the height of the writing or printing. This mode of telegraphing has fallen into disuse, the reasons being, in wy opiniou, the great namber of changes of electric counection required to render the characters distinct and the practical difficulties attending the use of the apparatus employed.

The copsing-telegraph, operating on the principles above mentioned, is clearly distinguished from the signalizing-telegraph, to which my inventiou has reference. In this latter class each letter, word, or syllable of a message is represented by a distinct signal. These signals are transmitted in succession along the main conductor, and are indicated or recorded at the place where they are receired. The differeut kinds of telegraphs constructed upon this principle are distingaished from each other either by the kind of signals employed or by the mode and apparatus by which the siguals are transmitted and recorded. In some telegraphs of this description the letters

time, the apparatus should at least be capable of making eight changes of electric connection. per second, and practically it should be driven finster than this rate.
a simple mode of applying this improvement to practice and for illustrating the principle of the invention is represented in the accoinpanying drawing, in which are shown two pendulums situated at the opposite ends of a telegraphic couductor, C C, and supposed to be actuated by clock-work or other suitable means, so as to move in harmons, or, in other words, to vibrate from k to k as neariy as possible together in position and in time of vibration.
At station \mathbf{A} is the standard-pendalam or chief station in reference to station B or other dependent telegraphic stations.
D D are the pendulum-rods with their balls or reights.
E are the prolonged ends of the pendinlam. rods, which should be made longer in proportion than representexl in the drawings.
F are rery flexible springs united to the prolunged ends of the pendnlam-ruds.
PR P and P S P are two groores or path. ways, so made that the springs F shall move in the groores P S P when the pendalams make the vibrations in moring from left to right aud shall fall into the groores \mathbf{P} R \mathbf{P} when making the vibration in moving from right to left.
C C C is the main conductor or wire of com. munication connecting the two telegraphic stations A and B together.
L L are conductors extended in directious parallel with the paths described los the extremities of the pendulums, and connected with ground-plates and ground-wires $x x$.
At K, station A, there are metallic points or eiges, over which the spring F passes, touching the surface each vibration, which points are connected with the conductors L, and conseqnentls are in electric communication with x.
The groove P S P is made of a nou-conducting material, and the groore P R P at station B is of metal and in electrical commnnication rith L and x.
The spring F at station A, in moving in either of the grooves P R P or P S P, is kept iu its path by an insulated or nou-conducting guide.
z is a Leyden jar, a prime couductor of an electrical machine or a galvanic battery, kept constantly charged or capable of giving a great number of visible sparks or electric palsations per second on making or breaking the electric circuit or line of inductive action.
The main condactor C CC has a metallic connection with the apper end of the peudulam. rods, which are also metallic, as well as their prolonged terminations, and are therefore good conductors of electricity. In this condition of things, whenever the spring F at station A passes over the points K in its vibration there will be an electric commanication or cir-
cait from z to K , and thence through L and z to the ground at station A; also, from z to the metallic groove P B P at station B and to the ground there, provided the pendulam at sta tion B is making its vibration from right to left when the pendulam at station A carries its spring F over the conducting-points K.
H^{\prime} and H^{2} at both stations are signal-making wires or keys, and G^{\prime} and G^{2} at both stations are signal-receiving wirea. The signalwires are to be supposed as numerous in each set as the numbers of difierent signals desired to be used-say not less than the letters of the alphabet. A smaller namber is shown in the drawings for the sake of distinction. The inner extremities of all the signal-receiving wires are flattened, and reach into the grooves or pathwars P S P in such a manner that the spring F shall touch and glide over the fiattened faces or ends of these wires in succession each time the pendulams move from left to right. The inner extremitios of the signal making wires, on the contrary, stand a little off out of the grooves or pathways, bat are monnted in such manner that each may be raised bs the pressure of the finger and brought into the line of the groove or pathway, to be toached by the spring F when the pendalam swings from left to right. All these signalwires are connected at their outer ends with the conductors $L L$, but are free and independ. ent at their inner ends.
The free ends of the signal-receiving wires maj have a width of half an inch (more or less) where F passes over them, bat mast not toach each other. The corresponding ends of the signal-making wires should be bat an edge or line, 80 that the signal-making wires can be touched by F but for a moment, while the sig. nal-receiving wires will be touched for a sensible time by F in passing over them, by which arrangement the necessity of absolute synchronisar in the morements of the two pendulams is aroided. Under these circumstances, if any one of the signal-making wires H' at station A. be moved withont breaking its electric connection with L, so that the end F of the vibrating pendulam will come in coutact with the end of the wire, a condacting.circait or electric carrent will be established for the moment through the whole system of conductors, for, as the pendulums are moved in harmons, the corresponding pendulum at statiou B will at that noment be in front of the group of sig. nal-receiving wires G^{\prime} of that station. Therefore from the electric circnit existing for that moment of contact there would be a spark visible or an electric pulsation upon the tlattened end of that one of the signal-receiving wires at station \mathbf{B} which corresponds with that one of the signal-making wires at the other station which may have been pressed upon and brought into the pathway of F. If, therefore, all the signal-wires in each set are marked by and signify the different letters of the alphalet, the left-band wire of each set being

is not impeded or controlled by the irregalar movement of other parts of the telegraphic apparatus.
4. Sending and receiving signals, as above stated, by apparatus so arranged and combined with the main conductor that in operating the impulse that closes or opens the circuit shall last but for a moment, while the contact maintained at the station where the sig. nal is receired shall last a longer period, so as
to obviate the necessity of exact synchronism in the movements of the mechanism at the tro stations.

In testimony whereof I have hereunto sub. scribed my name.

HARRISON GRAY DYAR.
W.itnesses:
J. Wrison Grmen, Wm. Leme Bennem.

6 dirh PAtiekny
onaryibe enowh

T. A. EDISON

Vooal Engine.
Patented Dec. 10, 1878.

Prig.

United States Patent Office.

THOMLAS A. EDISON, OF MENLO PARK, NEW JERSEY.

IMPROVEMENT IN VOCAL ENGINES.

Specification forming part of Letters Patent No. 210.76\%, dated December 10, 1878; application filed November 27, 1878.

To all rchom it may concern:
Be it known that I, Thomas A. Edison, of - Menlo Park, Middlesex connty, State of New Jersey, have invented certain now and useful Improvementsin Vocal Engines; and dohereby declare the following to be a full, clear, and exact description of the invention, such as riil enable others skilled in the art to which it pertains to make and use it, refercnce being had to the accompauying drawings, which form part of this specification.

The object of my invention is to transform the vibrations of a diaphragm or other body capable of being set in ${ }^{*}$ vibration by soundwaves into continuous rotation of a slaft, to act as a prime motor. for various light mechanisms.

My inrention consists in the combination, with a diaphragm sensitive to sound-wares, of a shaft between centers haring a fly-wheel attached, and combining the diaphragm therewith by a friction-clutch, which, when recip. rocated by the vibration of the diaphragm, acts upon a shaft so as to continuonsly rotate the same when the diaphragm is actuated by sound-waves.

Figuro 1 is a front view of my apparatus. Figs. 2 and 3 are sile views of the same.

In Fig. 1, O is the diaphragm, of any convenient material, which is secured to tho frame A. by the ring D and screws $X X . B$ is a mouth-piece for concentrating the air-wares apon the diaphragm. Fis a cork secured to the center of the diaphragm. 2 is a rubber tube, into which a pin is secured. This pin connects the rubber with the reciprocating lever G, whose fulcrum is upon the shaft 3 .
P is a click or parl resting upon the wheel II, and pressed against its surface by the spring 0 . K is another click, secured to the apright M, which serves to prevent a backward motion of the shaft. E is a fly-wheel, for storing, by momentam, the intermittent power, and thus keeping the shaft in continu.
ous rotation. The shaft 3 runs in centers between the uprights MI and N. The whole is secured to the base W.

The action is as follows: When the mouth is placed in proximity to tho mouth-pieco B, anil several Troris aro spoken, or a musical note given, the sound-waves, striking the diaphragm, set it in ribration. This, in turn, rociprocates tho lover G, causing the shaft to be carried forward a small distance at every vi. bration, and the momentum of the fly-wheel transforms these minuto impulses into continuous rotation of the shaft. A small grooved palley, 4, Fig. 1, is attached to the shaft, in the groove of which a continnous thrend or band may pass to any light mechanism, and thus give motion.
I do not wish to confine myself to any particular mechanism for transforming the vibratory motion of the diaphragm into contin. uous motion, as a ratchet-wheel and click and mauy other well-known mechanical equivalents may be used. Neither do I wish to confive myself to a pulley and cord for connecting the prime mover to the apparatus to be set in motion, as Ω worm and wheel or toothed wheel or friction-wheel may be substituted insteml.
A large cone may be inserted in the mouthpiece B, for collceting extraneous sounds aud cansing them to move the diaphragm.

This apparatus is useful for giving motion to clocks and other small apparatis requiring minate power.

I claim as my invention-
A rocal engine consisting of a diaphragm or other body capable of being set in motion by sonncl-waves, a shaft, and reciprecating mechanism, substantially as and in the manner set forth.

THOMAS A. EDISON.
Witucsses:
Wm. Carman,
Cifas. Batceelor.
$1 \Lambda 1$ A-N $\mathrm{N} N \mathrm{~N}$

ЕTHERFORCE

United States Patent Office.

ROBERT SMITH, OF BLACKFORD, COONTY OF PERTH, SCOTLAND, AND ALEXANDER BAIN, OF BEETOR LODGE, HAMMERSMITH, COUNTY OF. MIDDLESEX, ENGLAND.

IMPROVEMENT IN ELECTRO-CHEMICAL TELEGRAPHS.

Specification forming part of Letters Patent No. 6,837, dated October 30, 1849.

To all uchom it may concern:
Be it known that we, Robert Smitr, Es. quire, lecturer on chemistry, of Blackford, in the county of Perthshire, in Scotland, in the Kingdom of Great Britain, and Alexander BAIN, Esquire, electro-telegraphic engineer, of Beevor Lodge, Hammersmith, in the county of Middleser, in the Kingdom of England, hareinvented certain new and useful Improrements in Electro-Chemical Telegraphs.
These improrements consist, first, in the peculiar mode of arranging the several parts herein described of our marking-instruments of electro-chemical telegraphs; secondly, in a mode of constructing a style or point holder so as to afford a ready and convenient mode of regolating the pressure of the style or point on the sarface of the chemically-prepared paper or other suitable fabric; thirdly, in a mode of applying 2 weight for regulating the pressure of an upper on a lower revolving wheel or roller in motion, so as to grasp the strip of chemically-prepared paper or other suitable fabric and insure its being dramn continaally forward; fourthly, in a mode of arranging the marking - instruments, keys, Fires, and batteries in a single circuit and in branch circuits connected therewith, so that a copy of a message sent from any station may be marked upon the chemically-prepared paper or other fabric at any desired number of stations in communication therewith, and also, if required, at the transmitting-station.

We do hereby declare that the following is at fall, clear, and exact description of the construction and operation of the same, reference being had to the annexed drawiugs, forming part of this specification.
Figures 1, 2, and 3 are perspective riews of three marking-instruments and apparatus as they would be arranged and appear at three distinct and distant stations-as, for instance, at New York, Philadelphia, and Baltimorewhich may be portions of au extensive system of telegraphic commanication from and at any of which messages may be transmitted and received. These instruinents may be at any conrenient distances from each other, and
although three only are here shown, any num. ber of them may be used, according to the num. ber of places betmeen which it is desired to transwit intelligence. Fig. 4 is an exterual side eleration of a uarking.instrument. Fig. 5 is a plan of the same; Fig. 6, an eud elevation, and Fig. 7 a vertical longitudinal section throngh the line $a b$ of Fig. 6 .

The same letters and figures refer to similar parts in each of these figures.

Figs. $4,5,6$; and i are drawn of the full size as employed by us. Figs. 1, 2, 3, 3, 9, and 10 are drawn to a scale of eight inches to a foot.

Within a metal frame, A BCD, open at the ends, is a morementrconsisting of a train of wheels or clock-work setin motion by a spring within the barrel a^{\prime}, the posterior periphery of which is formed into teeth a^{2}, that work into and drive a pinion, b^{\prime}, on the arle of the first wheel, c. The wheel c takes into a wheel, d, on the axle of the larger wheel e, which wheel e works into a pinion, e, on the axle f^{\prime}, which carries a wheel, g. The asle f^{\prime} passes throngh the front plate of the frame, and is supported by an external bracket, E, screwed or other. wise affixed to the frame. The wheel g drives a pinion, h, the axle of which projects through the back frame aud is sapported by a bracket, F, affixed thereto. On this axle, betreen the side frame and the bracket F, is placed an arm, i, carrying an adjustable fy or regulator with two ranes, $i^{\prime} i^{\prime \prime}$, the resistauce of the air against which as they revolre retards the motion of the train of wheels acted upon by the spring in the barrel a^{\prime}. The tro ranes $i^{\prime} i^{\prime \prime}$ turu springtight on pirots in the arm i, to admit of their being set at any required angle, and thereby increase or diminish the amount of resistance opposed to the motion of the train of wheels.
The two side frames of the instrument, A BC D, are held together by four pillars, $\mathrm{G}^{\prime} \mathrm{G}^{\prime} \mathrm{G}^{\prime \prime} \mathrm{G}^{\prime \prime \prime}$, which are rireted to the back frame. The opposite ends of these pillars pass through the front frame, and are pinned on theoutside thereof. The side frames, A B C D, and the foun-dation-plate A^{\prime} are of metal; but the top H of the frame is of wood or other non-conductor of electricity, and is secured thereto bs two sunk

cally-preparel paper to the roller 20, a mark being made apon the paper every time and all the time an electric current is passing.

In order to transmit intelligence, a key-board (shown at Figs. 8, 9, and 10) is employed. This apparatus consists of a that mahogany board, Z , on which are two brass plates, T U. To the plate U a metal spring, S, is screved in such at manuer that its opposite end is directls over but not in contact with the plate T.

In the free end of the spring S a screw, g^{\prime}, is inserted, the point of which, on pressing down the spring, strikes the plate T and inakes a contact between the plates T and U. A wire from the copper end of a galranic battery, being brought throngh the key-board Z, is permanently attached to the under side of the plate T. A wire is similarly attached to the plate U. On pressiug down the spring S, therefore, a continuous metallic communication is established between the two wires, which becomes broken on releasing the spring.

At each telegraph-station there is a similar arrangement of apparatus, and also a suitable battery rith tro plates of copper suak in the earth, as shown in the drawings at $\mathrm{C}^{2} \mathrm{C}^{\mathrm{b}} \mathrm{C}^{\mathrm{e}}$ $\mathrm{C}^{\mathrm{d}} \mathrm{C}^{\mathrm{e}} \mathrm{C}^{\text {? }}$.

A single main wire is carried throngh all the stations between which telegraphic commanication is to be held, whether they may be in a direct line or radiating therefrom. A wire proceeds from the zinc end of the battery to the copper plate C^{3}, Fig. 1, while a wire from the opposite end of the battery passes ap to the kej, Fig. 8, and is in direct commanication with the plate T. A wire from the plate U is led up to the pillar R^{2}, from which there is also a wire commanicating with the main wire of the telegraph. A wire from the pillar R is in communication with the copper plate C^{b}.
The instruments and apparatus at each of the communicatiug stations are arranged in a similar manner.

Having thus fully described the whole of the machinery and apparatus uecessary at each station for transmitting and recordiug messages, we will now explain its operation.

We will suppose that a communication is to be transmitted from Baltimore to Philadelphia and Ner Fork, and to be also recorded at Baltimore. The system of correspondence made use of consists of dots and lines, the number, dimensious, and relative positions of which form an intelligible code of signals, as is well understood. The spring a^{\prime} being wound up and the detent-lever I disengaged from the arm j, the traiu of wheels commence running down, and the chemicalls-prepared paper or other fabric is gradually drawn forward by the friction of the roller g^{\prime} and the weighted roller 0 and passes betreen the style or point in the holder M^{2} aud the roller $i c$. On pressing down the spring S on the key Z, Fig. 8, and striking a blow on the plate T an electric current
from the copper end of the battery passes np through the key Z to the pillar R^{2}, one portion of which electric carrent goes to the holder M^{2}, down the style, and through the chemi-cally-prepared paper or other fabric (on which it marks a dot) to the roller 20 and pillar R, from which it goes by the couducting-wire down to the copper plate C^{b}, through the intervening earth to the plate C^{a}, and so up to the zinc end of the battery, thus completing the circuit: but at the same instant another portion of the electric current has passed ap to the main wire and throagh the markinginstraments at all the stations in communication with the trausmitting-station. Thas, for instance, a portion of the electric current passing from the main wire enters the marking-instrument at Philadelphia by the pillar R ${ }^{3}$, passes through the chemically-prepared fabric, (apou which it marks a dot,) and goes by a path similar to that hereinbefore described to the copper plate C^{d}, and thence throngh the intervening earth and copper plate C^{3} to the zinc end of the transmitting-battery. Precisely the same effect takes place at New York. A portion of the electric carrent, leaving the main wire, passes down through the marking-instrament, taking the same course as before-explained, and leaving a dot upon the prepared fabric, passes down to the copper plate $C^{\text {r }}$, from which it retarns through the intervening earth and the copper plate C^{-}to the zinc end of the batters. The same effect precisely will be-produced upon the marking-instruments at every other station within the electric circait. If the spring S of the key Z is held down, instead of merely striking a blow, a line is produced on the chemically-prepared paper or other fabric of a length proportioned to the time the commanication is continued; and in this way, bs marking dots and lines apon the prepared fabric, messages may be transmitted from oue station to the other. The train of wheels is to be kept constantly in motion at every station where a message is expected; but any of the stations may be thrown out of commanication by lifting the style and holder M^{2} out of contact with the chemically-prepared fabric and roller 20 , when no current of electricity can pass throagh the instrument at that station.

We do not claim as our invention the train of wheels constituting the motive part of the marking-justruments. Neither do we claim or coufine ourselves to ans particular form of batters or other generator of electricity, which may be of any suitable form, several of which are well known and in common use.

We desire it to be anderstood that what we claim as new and of our invention is-

1. The modeof arranging the sereral parts of our marking-instrument for electro-chemical telegraphs, substantially as hereinbefore described.

T. A. EDISON.

Circuits for Automatic Telegraphs.

Thomas $I T$ edison

THOMIAS A. EDISON, OF NEWARK, NEW JERSEY, ASSIGNOR TO HLMSELF AND GEORGE HARRINGTON, OF WASHIYGTON, DISTRICT OF COLUMBLA.

IMPROVEMENT IN CIRCUITS FOR AUTOMATIC TELEGRAPHS.

Specification forming part of Letters Patent No. 141,776, dated August 12, 1873; application filed January 15, 1873.

To all whom it may concern:
Be it known that I, Thouras A. Edison, of Newark, in the county of Essex and State of New Jersey, hare inrented an Improvement in Telegraphic Circuits, of which the following is a specification:
In antomatic telegraphing the speed of the pulsations is such that the line becomes surcharged, and the mark upon the chemical paper is attenuated to sach an extent that one mark runs into another, or dots appear like dashes. The chemical paper is now made very sensitive, and a rery feeble carrent is sufficient for making the mark; but in long lines the difficalty in clearing the line of the static electricity has been so great as to reduce the speed of transmission in order to obtain legible characters.

My present inrention has been derised and successfully employed for effecting the clearing of the line without injury to the transmission of the pulsations.
Leaks and ground-connections have befcre been employed. My invention, therefore, does not relate thereto.
I make use of a batiery; or a number of batteries, at a distant station, or distributed along the line, such battery or batteries being much Weaker than the sending-battery, and connected in such a manner to the main line as to direct upon the same a current of opposite polarity, which has to be orercome by the pulsations from the sending-station; but these are always sufficient, and the slight reverse current, acting in detail upon the line-wires, keeps them free from any attenuation in the transmitting pulsations, thereby increasing the rapidity of antomatic telegraphing, especially on long lines, and rendering the rriting clear and sharp.
In the diagrams on the drawing, a represents the line; b, the transmitting-battery; c, the transmitting-instrument; aud d, the receiv-ing-instument. In the former a strip of perforated paper and stylus are employed; in the latter a strip of chemical paper and a stylus. Whe In Figure 1 there are several branch circuits, fin which are placed rheostats or resistances that may be adjustable, and also batteries G that are of the proper power, and placed

With the opposite pole to the line to that of the battery b, so that the line is operated upon in detail, at suitable distances apart-sajerery one hundred miles, more or less-and the line freed from tailing; and the same is opposed to the main current, but not sufficiently power. ful to nentralize the same or to interfere with the transmission. These batteries s are so proportioned or adjusted as to be equal to the static electricity or current generated by the passage of the main carrent. The rheostats or resistances r are sufficient to prevent the battery b being short-circuited throngh the various branch-circuit connections to the earth, and to cause the proper proportion of said battery-carrent to reach the receiving-instrument.

In Fig. 2 the same parts are emplosed; but the opposition batteries s are placed in the main line, and distributed along the same. The branch circuits to the earth, with resistances, act with the local opposition batteries to establish carrents coanter to the main carrent.

In Fig. 3 the effect produced is the same as before described; bat in place of rheostats there are condensers t, and the opposition local batteries s, acting upon the condensers, establish an opposite polarity on the plates of the condenser that are connected with the line to the polarity of such plates when intioenced by: the transmitting-battery, thereby neutralizing the tailings by charging the line statically in opposition to that from the main current.

The condensers may be connected with the opposition local batteries, in the manner seen in Fig. 4, so that the plates that are connected to the line-wire will also be connected to one pole of the battery, and the other plates of the condenser will be connected with the earth and the other pole of the batters, the operation being similar to that before set forth.

In Fig. 5 the parts are the same in their operatiou as those before described; but instead of ordinary batteries, caps u, containing platina or carbon strips and acidulated water, are employed, so that when the pulsation on the main line ceases to charge such caps a mo mentary reverse carrent is established to n\&

tralize the tailing by instantly freeing the line of any electric charge.

In Fig. 6 the line-battery s is introduced at the receiving-station, to neutralize any local current that mar leak from one insulator to another upon the poles r, and tend to charge the line sufficieutly to produce a light continuous mark upon the paper, the battery s not being sufficient to interfere with the pulsations for the message, although its poles are opposed to the same.

The electro-marnets, at h, are in a shant, connected at both sides of the receiving-instrument, to neutralize ans tailings at the in-
strument, as in my application No. 61, dated Norember $9,18 i 2$.

I claim as my invention-
The use of an opposition or secondary battery of weak power at one or more points, to act in the main line in opposition to the pulsations from the transmitting-instrument, to free the main line of surplus or static electricity, substantially as set forth.
Signed by me this 12th day of December, 1872.

Witnesses:
THOMAS A. EDISON.
Geo. T. Pinchner,
Ceas. H. Smith.

No. 7,406.
Patented May 28, 1850

 ЕTHERFORCE

MARSHALL LEFFERTS.
Improvement in Chemical Electric-Telegraphs. No. 114,692.

Patented May 9,1871 .

ntrinaxey,

Ges steralearn

United States Patent Office.

Marstall Lefferts, of New rork, j. y.

improvement in chemical electric telegraphs.

Specification forming part of Lettera Patent No. 114,693, dated Mas 9, 1871.

To all uchom it may concern:
Be it known that I, Marsianl Lefferts, of the city and State of New York, hare invented and made an Improvement in Electrical Telegraphs; and the following is hereby declared to be a correct description of the same.

In chemical telegraphs a difficulty has existed in taking more than oue copy of the message in any one circuit because the resistance to the pulsation in passing through the chemicallr-prepared matcrial has been such as to weaken the pulsation going to the next station, rendering the second copy indistinct and unreliable; or, if the second copy was of proper character, the first being too dark, the marks spreading into each other or the paper being burnt. Besides this, telegraphic characters, at times, are not distinctly made, being drawn out to a fine line, due to the gradual electrical subsidence or a lateral current.

My inrention is designed to obviate these difficulties by the use of a "shunt" or derived circuit in the main line to divert a portion of the current through the instrument, the remainder passing onto the next, by placing a resistance-coil in the main line, between the points of conuection of the shant, and proportioning the resistance to the force of the current, so that only the necessary current is diverted to each instrument, therebs as many copies as desired of a message may be made on one main line, and of nearls uniform character. I also arrange a local battery within this shmnt or derived circuit, placing its poles in such a manner that when the main current has ceased to flow a reverse current from the local battery is made to circulate within the derived circuit, the action of which is to clear the apparatus or shunt of the lateral or sec. ondary current, which is the cause of the characters being drawn out so as to render them illegible.
It is to be borne in mind that the mark in a chemical telegraph is in consequence of the decomposition of the materials emplosed under a positive current passing from the stylus, the reverse current producing no mark.

In the drawing the arrangement of the parts and connections at the different stations is illustrated.

Let a represent the battery; b, the fingerkey or equivalent; and c, the ground-connectiou at one station; d, the line-wire passing to the stations E F, or to any number of stations; and g, the distant ground-connection.

At station E I hare shown a resistance. coil, h, in the main line that causes the pul. sation to separate, a portion passing by the circait i, through the stylus o and chemical paper in the instrument and returning to the main line d, thence proceeding with the pulsation, passing throngh h to the distant station; and by proportioning the resistance in the coil k to the strength of the current the pulsation necessary will be deflected through the shunt or derired circuit. Sereral stations may have the connections thas arranged.
At station F the resistance-coil h is introduced for the same purpose; but the battery l is also employed. This battery is in the shunt, and the conuections through the main line and shant form a local circuit, with the positire pole toward the chemical paper; and hence the stylus is negative, and produces no action on the paper.

The main circuit, passing through the de. rived circait, neutralizes the action of the local battery and transmits through the chemical paper sufficient carrent orer and abore that of the local battery to produce the character; but when that pulsation ceases the battery l comes into action and throws a reverse current on the stylus, rendering the mark sharp instead of attenuated.

The coil h is constructed so as to prodace the necessary resistance; but I prefer to make use of an adjustable coil or resistance, so that the derived circuit may be regulated as required.

I claim as my inrention-

1. A derired circuit or shunt in the main circuit, in combination with a chemical decomposing telegraphic apparatus, substantialls as set forth.
2. A local batters within the divided cir.

United States Patent Office.

THOMAS A. EDISON, OF NEWARK, NEW JERSEY, ASSIGNOR TO HIMSELF AND GEORGE HARRLNGTON, OF WASHINGTON, D. C.

IMPROVEMENT IN CHEMICAL OR AUTOMATIC TELEGRAPHS..

Specification forming part of Lettcrs Patent No. 150,848, dated Mas 18, 1874; application filed January 15, 1873.

Case 64.

To all uchom it may concern:
Be it known that I, Thomias A. Edison, of Nerrark, in the county of Essex and State of New Jersey, hare invented an Improvement in Telegraphic Circuits, of which the following is a specification :
It is well known that in the induction-coil of an electro-magnet or primary helix a secondary current is induced or set up, and that this can be conveyed over a wire, and will pulsate with the primary carrent throagh the magnet-helix.
In chemical telegraphs great rapidity can be obtained upon short lines, while upon long lines the speed is rapidy diminished by increasing the distance. The current required in chemical telegraphs and cables is comparatively weak. I therefore make use of the secondary current from an induction-coil of an electro-magnet or primary coil as a relay for continuing the transmission of the message in long lines, and that without lessening materially the rapidity, and without blurring the message, as received, by tailings resulting fiom sarplus or static electricity in the line, as now usual in long lines.

By the means before mentioned, all mechanical devices and movements, such as armatures, lerers, and relay circuit-closers, are dispensed with, and the electrical operation alone relied upon, and I am able to operate chemical-telegraph lines with a rapidity heretofore ansurpassed. I divide the line up into sections of suitable lengths-say, about four or five hundred miles each-employing a line from the trausmitting-station as long as can be used to adrantage, and then introducing an induction-relay, either reaching to the re-ceiring-station or to the next induction-relay. In some instances I make use of the induction relay in operating local or branch circuits.
In the drawing, a is the transmitting-instrument; b, the battery; c, the line-wire of the main circuit. k is the induction-relay, and e is the receiring-instrument.
The induction-relay is preferably of large wire with a large number of convolutions, so
as to obtain an increased quantity in the ins duction-current. One coil may be outside the other coil, as shown in Figure 1, or the induc-tion-coil i may be separate upon the same core, as the primary helix k, as seen in Fig. 2. The primary or main circuit passes through the helis k; thence to the earth. The secondary or induction circuit is connected from the coil i to line-wire and distant instrument, and also to the earth.
In Fig. 1 the entire line is represented as divided into three sections, the first one being operated by the primary current, and the second section by the induced current, which, in turn, operating in the second induction-relay, operates in the third circuit that extends to the receiring-instrument. The number of circuits operated by induced magnetism may be increased, and I remark that, in consequence of the instantaneous action of the induced curreut, the transmitting-machine has to be worked with great rapidity, and that the dot-alphabet is preferable to the dot-and-dash alphabet.
In Fig. 3 a singie primary circuit is shown, with an induction-circuit to operate the re-ceiving-instrument. A rheostat or adjustable rheostat may be employed to regulate the proportion of current passing to the chemical paper.
In Fig. 4 a battery, t, is applied to the line near the induction-relay, of less power than the transmitting-battery, and with the opposite pole to the line, so as to clear said line, with rapiditr, of static electricity or attenuation in the pulsations. In this case the induced or secondary current is produced by the increase and decrease of the current.
In Fig. 5 the transmitting.instrument is illustrated as being at New York, and working to Washington, and at Philadelphia and Bal. timore primary and secondary coils, so that the induced circuits set np at these places can work to Cincinnati and Pittsburg; and at Harrisburg an induction-coil that sets up a second induction-circuit to Buffalo.
At any of the receiring-stations there may
be an electro-magnet in a local circuit to set up a counter-circuit when the pulsation ceases, to prevent tailing, as shown at d.
If reguired, there may be branch eirenits, resistances, and connections to the cirth from either the primary or the scoondary circnits, to aid in clearing the line of surplus electricity:

In rapid automatic telegraphy the seconiary current, although but momentary, is of greater intensity when the primary current is prolonged, (as with a dash,) so that the differeyce betreen dots and dashes is apparent in the ciemical raper; and in cases where the differeace is not sufficiently apparent the dot-alphabit will be us-d.

I do not claim the secondary circuit acting in a magnet to produce a signal.
I claim as my inrention-
A circuit for chemical telegraphs, composed of the primary circuit operated by the transmitting iustrument, and an induction-relay coil to act in the receiving-instrument by a secoudary circuit, substantially as set forth.

Signed ly me this 12th day of December, $18 i=$.

> THOMAS A. EDISON.

Witnesses:
Geo. I. Phickier',
Chas. H. Siltif.

No. 135,531.
Patented Fe.b. 4, 1873.

Miciucisen

thomas a. EDISON, OF NEWARK, NEW JERSEY, ASSIGNOR TO HTMSRLF AND GEORGE HARRLYGTON, OF WASEINGTON, D. C.

IMPROVEMENT IN CIRCUITS FOR CHEMICAL TELEGRAPHS.

Specification forming part of Letters Patent No. 135,531, dated February 4, 1873.

To all chom it may concern:
Be it known that I, Thomas A. Edison, of Yerark, in the county of Essex and State of Yew Jersey, hare in rented an Improvement in Circuits for Chemical Telegraphs, of which the following is a specification:
Before this invention telegraphic circaits had been arranged with a rheostat to regulate the portion of the electric pulsation passing to the chemical paper, and allowing the other portions of the palsation to pass along upon the main line, or to go to the earth as a leakage. In these cases the rheostat did not produce any counter current, and served onls to direct portions of the electrical raves through the chemical paper, but the tailing and the attenuation of the mark was not avoided, and apon loug lines these marks usually ran together, because there was not sufficient time for the electric action to cease, or the line to free itself before another pulsation succeeded and the line became surcharged. In all cases it has been desired to obtain the most perfect insulation of the line to aroid the use of poweriul batteries and to lessen atmospheric infuences. It has, howerer, been found that When the insulation is impaired by atmospheric influences, the marks upon the chemical paper are more distinct, because the surplus electricity finds rent in currents to the earth, lessening the tailing.

When an electro-magnet is charged by a pulsation the electric action, in the circuit of Which the helix of the magnet forms a part, is augmented; butwhen the main or line current is broken the magnet, in discharging itself of the magnetism that has been induced, sets ap momentarily a counter current or one of opposite polarity. I arail myself of these rarious conditions, and arrange the circuits in such a manner that the electro-magnets which are energized by the pulsation that makes the mark on the chemical paper, serre to iatensify the electric action upen that paper; but that the counter current, set up when the primary circuit is broken, shall neutralize the tailing or attenuation of the current by the discharge of the magnetism from the electro-magnet, thereby allowing for the use of very feeble currents and rendering the marks upon the chemical paper sharp and clear; and I furthermore em.
ploy apon long lines one or more earth connections, in which are placed one or more elec-tro-magnets, with or without rheostats to regulate the proportion of currents passing to the earth, such connections and electro-magnets serving to free the line from surplus electricity and by the reverse polar action, as the electromagnet discharges itself, to free the line from any attenuation of the primary pulsations.

With long lines it is preferable to employ long electro-magnets; and the reverse, in order that the time occupied by the magnet in discharging its magnetism may be proportioned to the attenuation or tailing of the main carrent that is increased by the length of line.

In the diagram annexed I have illustrated my improvement by four stations, New York, Washington, Lynchborg, and Charleston. The message is being sent from Charleston to New York by the battery a, and ans suitable transmitting instrument at c, such as a stylus and perforated paper, or a finger-key or other deFice. The battery may be connected with either the positive or the negative pole to the instrument, and the other to the earth wireAt New York is any suitable receiving instrament, at d, such as a dram and stylus, for the chemical paper. If intermediate connections are not required they may be dispensed with and the message will be receired only at New York.

I provide a secondary or local circuit connected with the main circuit at both sides of the receiring instrument d, and in this I place the electro-magnets h. These and the others spoken of may be of ordinary character; bnt as quantity rather than intensity is required, large wires may be used for the helices, and solid bars, bundles, or tabes for the cores, and many of these may be employed, or a large number may be provided, and more or less may be brought into action by switches or a commatator. The helices might be of iron wire wound in sereral lajers, and cores be dispensed with, the inner portions of the coils forming the electro-maguets.

When the circuit is closed and a pulsation passes in the main line, a local circuit will thereby be set up through the electro-magnets and connections in the same direction as that of the main-line, and thereby intensifying the

T. A. EDISON.

Duplex Chemical Telegraphs.
No.156,843.
Patented Nov. 17, 1874.

Winneacs,
Chresthruses
Ges.d. Naluter.
Onwmion
Shomas A. Gdionn
S.tt Seveces
aty.

United States Patent Office

THOMAS A. EDISON, OF NEWARK, NEW JERSEY, ASSIGNOR TO HMMSELF aNd GEORGE HARRLIGTON, OF WASHINGTOY, DISTRICT OF COLUMBIA.

IMPROVEMENT IN DUPLEX CHEMICAL TELEGRAPHS.

Specificationforming part of Letters Patent No. 156,848, dated Sorember 17, teit; application filed

 March 12, 1873.
Case 69.

To all uchom it may concern:

Be it known that I, Thomas A. Edison, of Sewark, in the counts of Esser and state of New Jersey, hare invented an Improvement in Circuits for Chemical Telegraphs, of which the following is a snecification;
The eject of tins invention is to trâtsme two dispatches orer the same wire at the same time by telegraphs employing perforated trans-mitting-paper and chemical receiving-paper.

I make use of apparatus for trausmitting bs perforated paper, and receiving the messages ou chemical paper at the respective ends of the line, and employ batteries, resistances, and connections arranged in such a manner that the effect of the trausmitting. battery shall be neutralized upon the receir-ing-instrument at the same end by an equal. ization of tensions, and the receiver shall be at a point where the tension is equal to all the electric currents, except to that current which comes from the distant station.

In the diagram, de are the receiving, and b c the tratistifiting, instruments. $m n$ are the main batteries. u and v are two batteries in the shunt-circuit opposing each other, and producing no etfect upon the receiver. ic x are batteries operating similar to $u c . \quad f g$ are resistauce-cnils, to increase and decrease the length of the shant-circuits. $h i$ are resist-ance-coils of nearly the resistance of the liue. $k l$ are the ground-plates. op are the double contact-spriugs, one spring, o, cutting off or "short-circuiting" the bittery x, and the other spring, p, placing the main battery n upon the line. This main-battery current divides at d^{\prime}, part going on the line and part to the ground, this route or negatire of the battery through the resistance i being in fact an artificial line, it being well known that a battery will supply several lines with an undiminished quantity of electricity, and that the addition of a line decreases the total resistance of the battery's circuit, and produces an extra amount of electricity.
To obtain the transmission of two messages orer the same wire at the same instant, it is only necessary that no effect shall be ob.
tained upon the recciring-instrument by the putting on of the sending-battery at the same station.
I will nori describe how-I produce this effect: When the paper of the message to be transmitted interrenes betreen the contact-springs Ip and the drum b, no current passes upon the line, and the batteries $u v$, being balanced within the shunt-circuit, produce no effect apou the receiver d, and a current coming from a distant station passes domn the shunt, and also through the receirer \dot{d}, and produces the message in the usual manner.

Supposing no current from the distant sta. tion was recording itself upon the receiver d, and it is desired to transmit a current to the distant station without producing ans effect upon said receiver d, it is accomplished as follows:

When the contact-springs $q r$ are in metallic contact with the drum b, by passing into a perforation in the paper being drawn orer said drum, the current from the battery m passes br r over the line, but it splits in three directions at c^{d}, part passing to the ground, and part passing be tiro routes to the line, via the shumt and the receiver d. The passage of the current through the receiver mould give a large mark at the receirer were it not that at the same time that the contact-spring r placed the battery m upon the line the spring q short-circuited the battery r, which had been opposing the battery u in the shant, hence allowing said battery u to hare free action, and the current from this battery thus set free acts in a contrary direction through the receiving-instrument a to that of the batters m, and br means of a switch for putting in and out wore or less cups the power of the batteries m and u are neutralized on the chemical paper at d; consequently no effect is produced at the receiver d when the battery m is placed on the line.

Of course, while the battery m is on, if a current from the battery n is sent orer the line it records itself in the usual manner upon the chemical paper on d.

I claim as my inrention-

Tho-treat bitrertes u amdror and x in a shunt from the main line and opposing each other, and a connection between them to the transmitting or receirine irstrument, in combination rith the main batteries, resistiances, and circuits, arranged substantially as and for the parposes set forth.

Signell by me this ith day of March, A. D. 1873.

THOMAS A. EDISON.
Witnesses:
Geo. T. Prnckney, Cras. H. Sinth.

Automatic Telegraph.
No. 165,156.
Fig. 7.

Fig. 2.

United States Patent Office.

PATRICK B. DELATT, OF JERSEY CITY, NEW JERSEY.

IMPROVEMEÑT IN AUTOMATIC TELEGRAPHS.

Specification forming part of Lelters Patent No. 165,156, dated July 6, 1875; application filed October 21, 1874.

To all chom it may concern:
Be it known that I, Patrick B. Delany, of Jerser City, in the coanty of Hudson and State of New Jersey, hare invented certain new and useful Improrements in Automatic Telegraphy ; nnd I do herebs declare the following to be a full, cleár, and exact description of the in rention, such as will enable oth. ers skilled in the art to which it pertains to make and use it, reference being had to the accompansing drawings, which form part of this specification.

It is well known that in rapid antomatic tclegraphy a great ditticults is experienced in false records or signals caused by an extra or induced carrent in the line itself. When the makes aud breaks of the regular transmitting current are made with great rapidity, this current oacupies the line during the period deroted to "spaces," causing tailings or blurs.
My inreution has for its object the remedsing of this; and to this end it coinsists in the combination in a local circuit, with an antomatic transmitter using perforated paper, of a relay, which in one coudition throws the current of the main batters upon the line, and in the other condition closes an earth connection, for readily discharging the line of the extra or induced current referred to, or closes the circuit to the line of a reversed battery for neutralizing the same.
In order that those skilled in the art may be enabled to make and ase my inrentiou, I will describe it in detail, reference being had to the accompansing drawings forming part of this specitication, in which-
Figure 1 is a diagram showing the arrangement of the transmitter, relay, and main-line connections to main-line battery aud-to earth; and Fig. 2, the same elements with line-connectioüs.to main-line and reversing battery.
In both figures, E represents an antomatic transmitter of avy of the .mell-known forms, having dram D and stylus 8 , between which the perforated paper is fed. $L B$ is a local bat-
tery, whose circuit is coutrolled by this transmitter. In the circuit 123 thereof is placed the relas-magnet A, with armature-lever F, to which the main line is connected. This lerer F plays betreen contact-points $a b$. In Fig. 1 the contact b is connected to the main-line battery MI B by wire 5 , the battery having the regular ground 4. To the coutact a a ground connection, 6 , is made.

The relars are made and anljusted to rork freely aud quickls. The paper being fed throngh E , as the stylns falls apon drum D through a perforation, the circuit is closed through a draming its armature domn and closing the circait of $M B$ to the line. As the strlus is lifted from the dram by the unperforated paper and the circuit broken, the lever fies back, closing the earth circuit 6 for the line, allowing the line to discharge, and thus obviating any tailing or blur at the receiriagstation.

In Fig. 2 a battery is'shomn connected to the line oppositely to the sigualing or regalar main battery. In this case, às the circuit of the main-liue battery is broken; the reserse current is thrown upon the line through the contact a. This current neutralizes the extra -or induced current, so that tailings or blurs are obviated.
Haring thas described my invention, what I claim, and desire to secure by Letters Patent, is-

The combination, with an automatic transmitter, of a relay which connects the line on one morement of its armature to the signaling battery, and upon the other to the earth or to a reversing battery, substantially as and for the purposes set forth.

In testimony that I claim the foregoing, I have hereunto set mg hand this 15th day of October, 1874.

Patrick b. DELANy.
Witnesses:
H. H. Wells,

Johi Bell.

W. E. SAWYER.

Tolegraphic-Circuit. No.166,305.

PatentedAug. 3, 1875.
Fig. 1.

Fig. 4

Fig. 3.

FFig. 6
FEg. 7.

Fig. 8.

Fig. ${ }_{R}$

WITMESSES: W.Wrollinghoith
Golow OKemon

ÆTHERFORCE

M. BJELL.

RHEOSTAT FOR MULTIPLE TELEGRAPHY.
No. 256,458.
Patented Apr. 18, 1882.

Madizon Bucll,

\qquad

M. BUELL.
bHEOSTAT FOR MULTIPLE TELEGRAPHY.
No. 256,458.

Wetrexses:

ARParce

InANITARATI

S. D. FIELD.

Rheostat.
No. 242,092.
Patented May 24, 1881.
*ig: 1.

Fig: 5 .
Yig:d.

Mgitnesses;
Irventor
OMerthochuord 'mench.
Fbephiem 91. Ficid, ty firs attorniy liverl Carl

RHEOSTAT.

SPECIFICATION forming part of Letters Patent No. 242,C92, dated May 24, 1881.
Application filed \mathbf{A} pril 1, 19es. (No model.)

To all ufhom it may concern:
Be it known that I, STEPHEN D. Field, a citizen of the United States, residing in the cits, county, and State of New York, hare in-- reuted certain new and nsefal Inpurovements ; in Rheostats for Daplex Telegraphs, of rlich the following is a specification.
Myin rention relates to certain improvements iu apparatus for the transurission of independent telegraphic signals simaltaneonsly from opposite ends of the same line.
The object of my invention is to neutralize or prerent the production of the false signals rhich tend to be manifested apon the receir-ing-instrument at the transmitting, or, as it is techuically termed, the "home," station, by the so-called "static discharge," which consists in the sudden escape to earth of a quantity of electricity stored up or accumalated apon the :: main line by inductive action daring the ontward How of the electric current, which takes place when a telegraphic signal is transmitted.
The inrention relates more particularly to an improved constraction of the rheostat which :; constitutes the equating-circuit, commonly termed the "artificial line;" and it consists in forming the said rheostat of tiro parallel condactors, placed in close proximity to and insalated from each other, the said conductors is being of substantially equal length, but haring different resistances. These are joined together at one end to form a loop, which is inserted in the artificial line and forms the principal portion thereof.
: $:$ In the accompanying drawings, Fignre 1 is adiagram illustrating the principle upon mhich my apparatas is constructed. Fig. 2 is a diagram shoring the manner in rhich the leugth of the artificial circuit may be raried. Figs. 3, is 4 , and $\overline{0}$ show differeut modifications in the construction of my apparatus.
In Fig. 1 I hare represented oue terminal station arranged for duplex trausmission according to the ordinary method, together with
15 line extending to the earth at the distant station.

K is an ordinary open circuit or three-point Les, the rear contact-stop, 3 , of which is connected directly to the earth, while the front i contact-stop, 2 , is connected to one pole of a battery, E, the other pole of which is to earth.
$m^{n} m^{\prime}$ are the two equal and opposing helices of a differential electro-magnet, M, which actuates the receiving-instrument. When the key K is depressed and brought in contact with its front stop,, , a current from the battery E passes throngh the key to the point 1 , where it divides, one portion going by the wire 4 , throngh the belix m, orer the line L , to the distant station, and thence to the earth at $g, 60$ returning through the earth to the opposite pole of the batters. In like mauner the remaining portion of the current goes, by the wire 5 , through the helix m^{\prime}, thence through the artificial line $L^{\prime} L^{2}$ to the earth at g^{\prime}, and σ_{5} thence returns in like manner to the other pole of the batters. This latter brauch circuit is techuically termed the "artificial line "in order to distinguish it from the main line, which extends to the distant station. If the resistance of the artiticial line be so adjusted as to be approximately the same as that of the main line, the current transmitted by the kes will divide at the point 1 into two equal portions, which will produce equal or opposite electrodsuamic effects upon the armature of the elec-tro-magnet M, and the said armature will therefore remain at rest when the kes K is depressed, notrithstanding that a carrent is passing orer the line I to the distant station. If, howerer, 8o the distant station transmits a current from its own battery (not shown) at the same time, the strength of the current in the main line is augmented by the combined action of both termiual batteries, its electro-dynamic effect 85 overporrers that of the current of the artificial line, the armature of the electro-magnet M is attracted, and a signal produced at the home statiou. Thas it will be understood that the receiving-instrament at the home station responds only to currents or signals coming from the distant station, and not to those transmitted by the key at the bome station, and consequently the two stations, when prorided with similar apparatus, can transmit signals simultaneously to each other without interference, the receiving-instrament at each station, although at all times traversed by the carrent of the main line, responding only to the siguals produced by the transmitting-key at the 100 other station.

In order to produce the result hereinbefore

[^0]

10

5 or more rheostats in the artificial line. These consist of a suitable length of comparatively, thin wire, preferably made of some metal which is a poor conductpr of electricits. A suficient length of such wire is round upon one or wore - spools or bobbins, and so arranged in conuece. tion with commutators that any required lougth of it manathe included in the circuit of the artificial line. By this means an equal dirision of the corrent from the battery E ber-
i_{5} tween the main and artificial lines may be tween the main and artificial lines may be
readils broungt about.
Having thus explained the construction and mode of operation of an ordinary duples-telegraph apparatus, I will nest describe the na-
set forth it is obriously essential that the resistance of the artificial line should be as nearly as possible equal to that of the main line. This has heretofore been effected br placing one ture of my present improrenent, and the manner of its application thereto in the best manner uow knomi to me.
It is well known that an insulated telegraplic line-wire of cousiderable length, mhether sus-
25 pended above the earth or submerged beneath the water, is capable of accuwulating or storing up a quantity of electricity while conucterl with a source of electricity. This property of an insulated conductor is termed its "iaduc-
30 tire" or "electrostatic" capacity, and the electricity so stored up and retained is called the "static charge" of the couductor. The electrostatic eapacity of the insulated condactor is a quantity depending upon the extent of its
35 superficial area, and upon the thickness of the non-couducting space irhich separates it from the earth, or from other conductors in electric connection rith the earth, which iusulating. space is called the "dielectric." Thus in the
40 case of au ordinary telegraph-line suspended upon poles in the air the earth and the surrounding objects counectel theremith-such as buildings, trees, and the like-form the outer inductive surface, while the air coustires the insulating medium or dielectric surrounding the conductor. In the case of a sabmarine cable the insulating.coatiug of guttapercha constitutes the dielectric, and the iron armor of the cable, or the surrounding rater,
5° as the case mary be, the outer inductive-surface. It will appear, therefore, from the hereinbeforewentioned consideratious, that when a loug line of telegraph is connected with the battery by depressing the key at the sending.station,
55 as for the purpose of transmitting a signal, the line will acquire a considerable static charge. At the completion of the signal, when the ber is raised, the line is first disconnected from the battery and immediatels aftervard connected
60 directiy to the earth at the home station, whereupon the accamulated induced electricits stored up in the line will suddenly escape to the earth, traversing oue coil of the electromagnet MI of the home receiring-instrument,
65 and prodacing what is termed the "static discharge." If the rheostat and the artificial line
in which it is placed have practically wo clectrostatic capacits, there mill be no corresponding discharge from the artificial line through the opposing coil of the electro-magnet M, and consequentir an extra or talse signal of short duration will be produced by the uncompensated action of the static discliarge of the main line in the electro-magnet.
Ihave discorered that the listurbing effects ;is of the static discharge from the line upou the apparatns at the home station may be compensated or nentralized by an improred construction of the equating-rheostat which constitutes the principa! portion of artificial line, by which method of coustruction it is placed under electrical couditions corresponding to those of the main line.

In Fig. 1 the maiu circuit consists of a line. wire, L , which we may assume to have a total $\mathrm{s}_{\text {; }}$ resistance of, say, fire thousand ohms, estending to the distant station, and of the earth l , which constitates the parallel return-conductor, and which has little or no resistance. Now let the artificial line L^{\prime} in like manner be con- 9 structed of a thin wire composed of metal of inferior conductivits, but of sufficient length to otter a resistance of five thousand ohms, and let this be joined at the point l to another conductor of very small resistance, L^{2}, laid paralled with it and estending to the earth at g^{\prime} or to the other pole of the battery. It is obvious that an inductive action must take place betreeen the conductors L^{\prime} and L^{2} of the artiticialline, rhich will correspond in its nature to that which takes place betreen the main-line conductor L and the earth G beneath it, and that these effects will balance or neutralize each other in the opposing coils m and m^{\prime} of the receiving-magnet 3 . I arail myself of this principle in the construction of wy indproved rheostat, which consists of a condurtor of great resistance and a conductor of little resistance, equal in length, placed paralle! to each other and properly insulated. The constractiou aud arrangement of the rheostat may be modified in various ways, according to circumstances. It may be rolled up in a flat spiral, as shown in Fig. 3, or apon a bobbin, as shown in Fig. 4. I consider it preferable, howerer, to lay it to and fro upou a plane sur face, as shown in Fig. \bar{j}. The particular ar. rangement, homever, mas be raried in wany ways, so long as the principle is kept in riew.
The electrostatic capacity of the open-air line L raries materially in different couditions: of the weather, being much greater in cold or dry meather, when the insulation is good, than in wet or damp weather, when the insulation is poor. It results from this that the effect ol the static discharge upon the home instrument is mach greater at some times than at others. As the artificial line is not exposed to the es changes in the weather, its electrostatic calpacity and the force of its discharge remainin practically constant. Hence, unless solue means are provided for adjusting this, the
\qquad
\qquad
\qquad

\qquad
\qquad $4:$

\qquad
\qquad
\qquad $1:$
\qquad
\qquad
\qquad

No. 22,531.
Patented Jan. 4, 1859.

Wiznesses.
S* Hoynend
Paypetatiot.

THOMAS A. EDISON, OF NEWARK, NEW JERSEY.
IMPROVEMENT IN DUPLEX TELEGRAPHS.

Epecification forming part of Lettera Patent No. 168,385, dated October 5, 1875; application 6led
Janaary 26, 1875.

To all whom it may concern:

Be it known that I, Tromas A. Edison, of Newark, in the State of New Jersey, have inreated an Improvement in Duplex Telegraphs, of which the following is a specification:
The object of this invention is to more perfectly balance and neatralize the static discharge of the line, so that there will not be any false palsations.
In the accompanying diagram the pulsation is given at the sending-station by the circnitpreserving key a, battery b, and connections ot th the bridge-wires $d e$ between the line f and earth g. In the portion d of the bridge is the electro-magnet h and rheostat k, and in the portion e is the electro-magnet l and rheostat m, and the receiving-instrament is placed in the circuit 2 between the two portions a e of the bridge. Said receiving-instrument is made of two electro-magnets, n o, that are placed at opposite sides and ends of the armature-lever p, so as to act thereon in unison with each other, and the cores of these electro-magnets are extended and sarrounded with the additional helices r and s, that are in a local circuit from the battery t, and provided with a rbeostat, u, the object of this being to set up a sufficient magnetizing power in the helices of the local circuit to neatralize in the cores the magnetism that may result from permanent corrents apon the line, thereby balancing such currents, and learing the receiving instrament free to respond to the pulsation from the distant instrument. This local circoit and helices also serve to neatralize any residual magnetism in the cores. This arrangement of electro-mag. nets and helices in a local circuit is not herein claimed, and it is set forth in a previous application made by me.

The electro-magnets $h l$ set ap in the triangular or bridge-circait $d e 2$ a secondary current when the circait from b is broken, so as to neatralize the static discharge from the line f and artificial line $g g^{\prime}$.
In consequence of the differences of condition between the actual line f and the artifcial line $g g^{\prime}$, it is difficult to adjust the rheostats $k m g^{\prime}$ 'so as to perfectly neutralize the static discharges, and equalize their action in the bridge d e, so that the receiving-instrument will be at a nentral point. To facilitate this operation we make use of a second artifcial line, formed of a rheostat, 12 , earth-connection 13, and helices 14, around the cores of the electro-magnet l, so that, the pulsation from c dividing, a portion goes through 14, 12, and 13, as well as througb h and l, the result of which is that the cores of l are more highly energized than of h, and the reactionary or secondary current set up in e by l is increased to whatever estent may be required to equal the static discharge from the line circulating through d and the receiving-instrument.
I claim as my invention-
The electro-magnets h and l, placed in the bridge-circait between the sending instrument and the line and artificial lines, respectively, in combination with the second artificial line 1213 and the helices 14 around the cores of the electro-magnet l, for the parposesset forth.
Stgned by me this 18th day of January, A. D. 1875.

THOS. A. EDISON.
Witnesses:
Geo. T. Pivciney,
Chas. H. Smite.

Henneases

No.178.221.
Patented Kay $30,1876$.

"

$$
\begin{aligned}
& \text { chaurting } \\
& \text { Hemed Pmidel }
\end{aligned}
$$

Bhomeas U. Edisen
P. Lemuerrts Seneed (my.

IMPROVEMENT IN DUPLEX TELEGRAPHS.

Specification forming part of Lettera Patent No. 178,221, dated May 30, 1876; applioation filed September 1, 1874.

To all rchom it may concern:
Be it known that I, Thomis A. Eisison, of Newaris, in the coanty of Essex and State of New Jersey, have iuvented an Improvement in Duplex Telegraphs, of which the following is a specification:

I make ase of a componnd induction-coil, through which the currents pass, and those from the sending - station are balanced, but the current from the distant station is operative.

The helix a sarroands the central part of the core that passes through the electro-mag. nets b and o; hence a secondary or induced current is set up in the helix a only when there is an excess of current in one of the helices b or o, berause if the current acting in b is eqnal to that acting in c, and the helices are properly wound, the maguetizing actions of the helices on the core will nentralize each other, and there will not be any secondary or induced current in a; bat when the carrent in one helix is greater than that in the other, the core will be magnetized, and a secondary current set ap in the helix a_{0}

I avail of this feature of the compound differential induction-coil to operate a duplextelegraph instrament, by causing the current at the sending-station, where this componnd differential instrament is placed, to divide and act equally in both b and c; but when the current frum the distant station increases the euergy of the belix b, then the indaction or secondary current set up in the helix a magnetizes the core sufficiently to set up a current in a.
The current in a operates in the polarized magnet f to open and close the local circuit g, in which is placed the receiving or sounder instrument h.

When the pulsation passing along the line k from the distant station ceases, the core of the helix b demagnetizes, aud in so doing sets up a secoud induced carrent in a of opposite polarity to the first, and thar acting in the polarized inaguet f instantly throws the contactpoint of the armatare the other way and opens the local circnit.
These operations in the compound differential induction-coil being borne in mind, it now becomes necessary to explain the manner of sendiug through such coils without producing any action on the helix a.

The key l in the local circait to the maguet m operates the lever n, that contains an insulated spring-closer, 3 , acting against the cir-cait-point 4, and the hook end 5 of the lever $m, s o$ that when the kej l is closed, the lever n mores the spring 3 into contact with 4 , closing the circuit from the battery 0 , through 4 3 and the wire 6 , to the helices b and c, and at the same time breaking the contact of 3 and 5 , and bence cutting out the ground-wire 8 from the lever n; but the moment the lever n retarns to its normal positiou by the demagnetizing of m, the spring 3 closes the circuit at5, just before separatiug from 4; hence there is always a metallic circuit complete for the puisation coming from the distant station, whether the circuit of the seuding-battery o is opened or closed.

In order to balance the action of the send-ing-current, that divides at 10 , and passes throngh b and c, I introdnce, in connection with the helix c, an artificial line equal in resistance and conditions to the line k, hence compelling an equal carrent to pass through b and c. To effect this the resistance r is placed in the ground-connection from c, which resistance should be adjustable, so that the rheostat or resistance r equals the line; and in order to set up in ca. counter magnetism equal to that set up in b by the static from the line, I make nase of the electro-maguet t, placed in a shunt that passes around c.

By this constraction of compoand differential indaction-coil, and the arrangement of the counections, the iuductive effects of palsations from the sending-instrument are balanced aud nentralized, while the pulsations from the distant station operate the receiving-instrument.

I claim as my invention-

1. The compound differential inductioncoils $a b c$, in comoination with the polarized relay f and the circait-connections, substan: tially as set forth.
2. The artiticial line, composed of the rheostat r and magnet t and ground-connection, in combination with the compound inductioncoil and line-connectious, sabstentially as set forth.

Signed by me this 19th day of Angast, 1874.
THOS. A. EDISON.
Witnesses:
Chas. H. Smith,
Geo. T. Pinceney.

(No Model.)

B. THOMPSON.

DUPLEX AND MULTIPLEX TELEGRAPE.
No. 264,372.
Patented Sept. 12, 1882

NTM

2
receiving-instrument are a source of confusion,
or in which the difference of static capacity of
the main and artificial lines causes a false sig-
nal from outgoing curreuts.
5
two coils
which coils is in the circuit from the transmitter
and battery to earth at the transmitting-station,
tbrough an artificial resistance, 12 , adjusted to
10 equal the resistance of the main line, while the
other coil is in the main-line circnit L^{\prime}. These
circuits and connections are clearly ${ }^{-}$indicated
in the diagram 12, being the wire connected
to the transmitter.
L indicates the lerer of the transmitter, which
is operated in the usual manner by an electro-
magnet, T, iu a lomal circuit with a key, K, and
a local battery. Said transmitter-lever carries
a spring, B, insulated from the lever aud con-
20 nected to wire 12, and is provided with a hook,
in contact with which the spring B uormally
rests, 80 as to complete a connection to earth
for incoming currents through a resistance, r,
counected to lever L_{L}, and of approximately
25
\vec{r} is resistance to the main-liue battery $M B$.
F is the contact-stop for spring B, connected
to the battery M B, so that when the lever L
is operated by electro-magnet T the spring B,
coming into contact with the stop F, completes
30 the circuit from wire 12 to the main battery,
the contact between B and C being simultane-
ously broken.
S represents the reading-sounder, which re-
sponds to signals from the distant end of the
manner, with two separate coils of wire cou-
nected at one end to one pole of the local bat-
tery LB and separately connected at their
uther ends, the one to a circuit-closing point,
40 6, through a lever, M, which carries and oper-
ates said point 6 , and the other to a contact-
stop, 5 , with which the point 6 normally makes
contact, the lever M being drawn toward said
stop by a spring applied as indicated.
45
closin the end of lever M is another circuit-
cosing point, s, which forms in effect the front
said lever being provided with a circuit-closing
point, 7, adapted to come into contact with
50 the point 8 on M, thas completing an electric
circait between the local batters $L B$, connected
to N , and that coil of the differentially-wound
sounder that is connected to M, and also with
the other coil through circuit-closer 56.
Armatare-lever N is provided with the asual
retracting-spring, as indicated, aud also with
the ordinary adjustable stops.
The operation of the apparatus shown is as
follows: Signals sent by key K do not ener-
60 gize relay G, because the currents from battery
MB circulate through its two coils in opposite
directions. If, through the difference in the
charge capacity of the main and artiticial lines,
the carrent in the coil connected to line (being
65 momentarily greater than that in the coil con-
nected to the artificial line) canse the core of
the relay to be energized and to attract lever
N , the armature-lever will be momentarily
driwn forward; but, even if it make contact
with M, no effect will be produced in thesonnder
S , since the further movement of lever N will
be prevented by the retracting.spring applied
to M, which is adjusted sufticiently high for
that purpose, so that the latter cannot break
the connection at 56 , and the oul 5 result there-
fore will be the closing of the local - battery
circait of L B through both coils of the differ-
ential soander, which will obviously not pro-
duce any attractive intuence in its core. So,
also, the only effect of the static discharge from 80
line, which flows whenerer the main battery
M B is removed, will be to close the circuit
throngh both coils of the sounder, the spring
applied to M being adjusted so high that, eveu
if the momentary discharge-current cause le- 8
ver N to make contact with M, it will not break
the contact at 56 , since it is not sufficiently
prolonged to bring the lerer N fully forward,
nor of saficient strength to overcome the ten-
sion of the springs applied to both N and M .
When, howerer, the core of the relay is ener-
gized in the well-known manner through the
operation of the transmitting-key at the dis-
tant end of the line the armatare-lever N is
drawn forward into contact with M, thus, as
before, closing the circnit through both diffier-
ential coils of the sounder S, but apon a con-
tinuation of its forward movement, owing to
the prolongation and greater strength of the
attraction, breaking the circuit through one
coil of the differential sounder by breaking the
contact at 56 , so that the current in the coil
connected to M , being free to act anopposed,
will energize the sounder-maguet and cause
its armature-lever to be attracted. When the
armatare-lever N recedes the circait throngh
both differential coils is broken and the sound-
er-lerer falls against its back-stop. The re-
tractor-springs applied to M and N are made
adjustable in the well-known way. The re-
tractor applied to N is set to a moderate de-
gree of tension, sufficient to hold said lever
firmly against its back-stop. The retractor ap-
plied to M is to be adjusted according to the
varying conditions of the main line. Any de-
sired proportional adjostment may be, howerer,
given to the springs, provided their combined
strength be insufficient to prevent the break-
ing of contact at 56 when the armatare-le-
ver is drawn forward in response to the oper-
ation of the key at the distant end of the line.
My invention is not limited to any particu-
lar construction of the circait-closing devices,
and others may be used in connection with the
sapplemental lever and armature-lever for
causing the latter to complete the circnit of
both differential coils when it is borne against
the supplemental lever and to break the cir-
cait of one of said coils when it is carried for-
ward so as to orercome the tension of the
spring applied to the supplemental lever.
Other mechanical devices may be used in place
of the lever M.
It is obvious that my inrention is applicable
to the receivers of other systems of daplex and multiplex telegraphs, and that it may be ased with any daplex or maltiplex telegraphreceiver which is so placed as to be affected
5 by the differeuce in charge capacity of the main and artificial lines or by static discharge from the main line.

What I claim as my invention is-

1. The combination, sabstantially as de-receiving-instrument, of a differentially-wound reading-sounder, both coils of which are normally broken; a sapplemental lever connected to one of said coils, a contact-stop for said le-
15 ver, connected to the other coil, and an arma-ture-lever for completing the circuit between both differential coils and the local battery when it is drawn forward against the sapplemeutal lever and breaking the circuit of oue 20 coil when it overcomes the tension of the spring acting npon the sapplemental lever.
2. The combination, sabstantially as described, of a differential sounder-circuit closing and breaking points in circuit with one of 25 its coils, a supplemental lever connected to the other coil, an armature-lever for completiug the circuit between both coils and the local battery when it makes coutact with the supplemental lever, and springs applied to both 30 lerers in the manner described, so as to oppose the movement of the armature-lever, so that the circuit-closing points controlled by the sapplemental lever can be broken only when the attractive force is sufficient to overcome the
3. The combination, snbstantially as de- scribed, of a differentially-wound receiver, ar-
mature-lever therefor, supplemental lever, with which said armature-lever makeselectrical contact when it is attracted, a stop for the aup. plemental lever, connected to one coil of a dif. fereatially-wound sonnder, a connection fom the other coil of said soander to the supplemeutary lever, a spring tending to keep the supplemental lever in contact with the atop connected to the sonnder when the lever in acted upon by the armature-lever, and cnunections from the local battery to the arma-ture-lever, so that when it is drawn forward against the sapplemental lever it completos the local circuit of both coils at the moment of making contact with said lever.
4. The combination, substantially as ilescribed, of a differentially.wound sounder nud local battery, a relay-armatare and sapplemental lever therefor, a contact-stop for the lever, connections from the local battery to the sounder, and the sapplemental lerer; as set forth, so that when the lever is disconnected from its stop the circait of one differential coll 6 is broken and a retractor applied to the sulpplemental lever and adjusted, in the mannor described, to prevent the removal of saill lever from its stop when the armatare-lever is drawn forward against the same by the action 6_{5}
of a static charge or discharge current.

Signed at Buffalo, in the county of Erio and State of New York, this 3th day of May, A. D. 1882.

BENJAMIN THOMPSON.
Witnesses:
Geo. O. M. Buckner, Jas. SWEENT.
(Ho 표odel.)

No. 243,410.
J. M. STEARNS, Jr. Duplex Telegraph.

Patented June 28, 1881.

243.110 2

through the soander J , and consequently it remains silent, no matter how violently the key be worked; but a part of the carrent passes down the live L to station Y from the 5 divide between the trio relass A B. At Y kes M is supposed to be open. Its only path is throagh the formard-contact relay A at Y station to earth G. This causes that relay to operate its contact-points E C, and as the backro coutact relay B has no magnetism or current in it, the other contact, FD , of the local circuit at Y is already made, and the full local circuit being made on the formard-contact relay A, the armature of Y sounder J is drawn ap 55 and instantly responds to $\Sigma \mathrm{key}$. Thas we see that operating Σ bey keeps its omu sounder still, while the other or F sounder respoads, and this with $\overline{\text { V }}$ key open. Now shut I ker. This draws up both its relays A B, 20 the formard and back contacts, and its own sounder or local circuit is not formed, for the reasons stated in relation to the arrangement before. The operation of the sending-key at X station opposes the battery-current in the

$$
25
$$ necoutact relay B at Y station and demag. netizes it. It falls on and off with the operation of the sending-ker M and works the sounder J, since the front contact on the other relas, A, remains dramn up. Hence it appears that

30 working X bey causes Y sounder to go whether Y kes is open or shut. If kees at both stations were both shut at exactly the same instant of time, it is obrious that the opposed currents would cause the back-contact relays relays would draw ap and the sounders wonld both respond-that is, thes mould attract their armatures and produce a sound. Sappose we are sending to opposite station, its key being with the bis, we are working ts soand Now let the opposite or Y station suddenly open its key while the levers of the back-contact relay B are just beginning to move back to make
45 signal. It is obvious that the only effect will be to hasten the back-coutact relay on its journey, there now being no current at all in it. As the forward-contact relay A is not in action at all, opening the key will canse it to kill
50 is open. If shut, no effect or motion is pro. daced. If the other key is open, the resaltant effect of the two is to break the sounder or local circuit, as it ought to be, when the opposite
$s s$ key is open, and the break is a point, not a line, as in the case of the make.
It is impossible to coutrive any shifting of the kess that would cause the sounders to trip orer each other, since in every position they
60 seem to help each other out. Suppose key at Y station is being shat, and before that carrent has time to draw up the relays at home or complete the signal at the other station the other key at X station is suddenly closed,
65 a false signal would not be made. The position is one that would not occur probably once
in a week; but still it is a possible position. The closing of one key draws up the relays at home and the forward-contact relay at the distant station. Yow, while the relay-levers are in transition, in that infinitesimal period of time the other kes is suddeuly shat. The effect will be to throw the back-contact relay back and help draw ap the front contact, and the signal is made by the responding of the sounder. In short, the sudden closing of the opposite bey merely helps a signal in transition to completion in a shorter time, but rith no change of form.
To adapt my incention to multiplex teleg. raphy I merely couple up the apparatus shown in Fig. 1 with one or more sets of the same bind as shown in Fig. 9, in which there are six seuding-kess at each station and three main or line wires. The working of the whole simply depends on keeping the relay-spriugs adjusted, as the batteries of each kes at one station are of different powers. The actual line-wire of kess 1 . is really the three linewires. The actual lines of keys 2 and 3 are really two of the line-wires, and of keys 4,5 , and 6 onls one of the line-wires. Ans namber, of keys mar be arranged in such an apparatys, adding sach additioaal main or line wirgs as become necessary; but it is evident that there are enormons facilities to be had by such an apparatus, for mith twelve line-wires one hundred aud bifty-six messages may be trausmitted orer the wires at the same instant.
I do not coutine msself to pas particalar 100 arrangement of wires, relass, sounders, \&c., since my invention has reference, broadly, to duples and multiples telefraphy and repezz ers when arranged for use with front and back contact relays, and without the use of an ans- ro iliary complicated methanism, as hgetofore used.
I am arrare of Thompson's atent, No. 195,055, for quad raples telegro 6 h , of 1877 ; but it works on n entirely diferent principle from that herein described, god I claim nothing'therein syown or descyled.
Haring now describerl ony invention, what I claim as pem, and destre to secure br Let. ters Pateit, is-

1. Telegraphic apparatus for transmitytng two messages over fingle wire, consisting of the ugual line-wirg main batteries, kess, local ircuits, soundey, and their batterjes, combinetr with tro elass capable of ajaking or breaking the syme rocal circuit, one of said relays being provided with a fron-contact point and the pther with a back-confact póint, substantially/as and for the purpose specified.
2. In a duplex or multiple telegraph, the 125 line wire on wires, main batteries, kees, sounders, local cilcuits, and local batteries, combined with tion located $y t$ each of the ends of each line-wire, and at the conuection or junction of wires connected with two or more of said line-wires, one of said relays being provided with a front contact and the other with

1. B. STEARNS.

Duplex Telegraph and Circuit Therefor.
No. 6,508.
Reissued June 22, 1875.

the proportion or ratio which it is necessary to maintain between the different branches of the circuit. This compensation or adjastment is preferably effected by means of the movable arm or contact-poiut C. By moring the point of contact along the series of resistances $r r r r r$, the ratio of the resistance of the branch $\mathbf{C} x$ to that of the branch $C z$ may readily be adjusted so as to correspoud to the altered resistance of the main line $x y$ relatirely to that of the artificial or branch line z E, and thus without difficultr a balance may be maintained at the receiring-instrument. If, nor, a current be set in action by the key at a distant statiou, it will, upou reaching the point x, find two paths open to it-one through IR and C to the earth, at E, either direct or through the main batterr, as the case may be, and the other through the bridge-wire and re-ceiving-instrunent A, and thence by z and R^{2} to C, where it rejoins the first-mentioned route to the earth.
A portion of the current also diverges at the point z, and goes to the earth by the way of B aud $\mathrm{R}^{\mathbf{2}}$; but, ou accoant of the much greater resistance by this latter route, only a small portion of the whole current arriving at x will pass through it. The receiving-instrument A is consequeutly actuated by that portion of the current which passes through the bridgewire $x z$ when the key at the distant station is depressed.
The rhenstat or artificial resistance R^{2}, which is placed in the artificial line between the point z aud the pole of the main battery which is connected with the earth, may be made adjustable, or the aljustment may be effected entirely by means of the series of resistances $\mathrm{R} \boldsymbol{r} \boldsymbol{r} \boldsymbol{r} \mathrm{R}^{\mathbf{1}}$.

For the purpose of enabling the operator at the home-station to hear the signals sent by him, I make use of au electro-maguet, B, placed in the artificial line between the key and the pole of the main battery, which is connected with the earth, so that a portion of the carrent of the main battery, after it divides at C , shall pass through such electro-magnet and cause it to respoud, and this electro-magnet may
actuate a sounding or recording apparatus, either directls or by meaus of a secondary circuit.

The electro-magnet B may constitute a portion or the whole of the resistance, which is inserted in the artificial line between the point z and the main battery-pole at E, and the adjustment of the different resistances is in either case made with reference thereto.
By the hereinhefare-described arrangement two operators at stations distant from each other may simultaneously make use of one and the same line-wire for trausmitting different and distinct communications without either party interfering with the siguals of the other, and such signals may be indicated or recorded by means of anj suitable telegraphic receivingiustrument.

I claim as my in rention-:
1.2 mititerentypir haing a receiringinstrument placed between the main line and an artificial line, and a connection from the transmitting. key to both sides of the receivinginstrument, so that such receiving-instruments may be at a neutral point with reference to the electric pulsations produced at that station, sabstantially as set forth.
2. A duplex telegraph containing a receir-ing-imatrnment placed at a nentral point, and an electe-nnguet in the artificial line, substantially as cet forth.
3. The combination of the receivinc-instrument with the resistances R R R R ${ }^{2}$, m the manner and for the purpose set forth.
4. The combination of the receirinc-instrnment and the resistances $R R^{1} R^{2}$ with a series of smaller resistances, r, as and for the purpose set forth.
5. The combination of the receiring-instrament A with the electro-magnet B, as and for the parpose set forth.

Signed by me this 19th day of Februars, 18 ī.
J. B. STEARNS.

In presence of -
Robt. M. HOOPER,
David T. S. Fuller.

J. M. STEARNS, Jr.

Duplex Telegraph.
No. 243,410.
Patented June 28, 1881.

SPECIFICATION forming part of Letters Patent No. 243,410, dated June 28, 1881.
Application filed December 30, 1880. (So model)

To all whom it may concern:
Be it known that I, J. Jillton Stearns, Jr., of the city of Erooklyn, in the county of Kings and State of New York, have invented an Im; provement in Telegraphy, of which the following is a specification.

My invention relates particalarly to what is known as "duplex telegraphing" or transmitting messages both ways at the same time 10 on one wire or single electric circait; but it also hasreference to moltiplex telegraphing and optional transmission, or ability at one extremity of a single wire to signal and transmit to any one of many lines or circuits which 15 may be connected to or at the other extremity of said single wire, or work on the same priuciple at the said point of junction or extremity of said single wire any particular electro magnet.
The object of myinrention is to atilize for the specific purposes specified the common instraments now in ase, and to sare time and expense; and the novelty consists in duplex telegraph and maltiplex telegraph set ap with
25 common instruments in use, and a daplex perfectly adapted for local stations at will without interfering with the ordinary instruments, all of which tend to cheapen telegraph intercourse.
30
In the drawings, Figure 1 is a plan of mginrention adapted to duplex telegraphing. Fig. 2 is a diagram of arrangement in which the system shown in Fig. 1 is adapted to the trans mission of twelre messages orer three wires.
35 of the pairs of relays in the maltiplex system controls a local circuit and sounder, (not shown in Fig. 2,) as in the case of the duplex shown in Fig. 1, and operates in precisels the same way, one of said relass haring a fur-
$t 0$ ward contact and the other a back contact.
Let there be two terminal stations, XY, connected by a single rire or condactor, L, orer which it is desired to establish a duplex system of telegraphs. At each of said stations
45 is provided a line-battery, N , sufficient to work the line in the usaal manuer. Each of said stations is provided with two relays, A and B, a key, M, local batters K, and sounder J. One of such relays, A, so provided is what is called
so a "forward-contact relay," making contact for a local circuit when its armature is attracted
toward its poles. The other of such relass, B, is what is known as a "back-contact relay," or making contact for a local circuit when its armatare is from or not attracted toward its poles. The line-battery N of the station being properly set ap and connected in series, either pole may be, bat for convenience of description I will say its zinc pole is, connected to the earth by wire L^{\prime}, either direct or with the common conuection for earth of other instruments. The copper pole of said battery is connected to the anvil of an ordinary telegraph-key, M, and the key is connected to one of the termi: nals or screw.cups of the back-contact relay B. The remaining screw cup or terminal of said back-contact relay is conuected to one terminal of screw-cap of the forward-contact relay A, and the other terminal or screw-cup of said forrard-contact relay is connected to earth at G throngh such resistance as may be required, according to the length and character of the line. On short lines none is necessary. The line-wire L is connected to the conductor joining the two relays, or between said relays at any point. The sounder J on one screw-cap or terminal is connected to the local battery K by wire I on one side direct. The other con. nection from the other terminal or screw-cap of said sonnder passes through both the forward and back contact-points of the said respective relays to the other side of said local battery.

The apparatus of the other station, \mathbf{Y}, is arranged precisely like the one above described, 85 and the line-wire connected in the same relative place-to wit, between the two relays of such station.
The operation is as follows: The apparatus being arranged as specified, each main battery N having zinc poles to ground, and both kess M being open, no currents of any kind traverse the line or apparatus. Now close the key M at X station. Both relays A B at X station draw ap their armatares, and the current from battery N, passing through the key M, passes through both relays A B to the ground G beyond. It will now be seen that, as the local contact $F D$ of the back-contact relay B is drawn apart or broken before the front contact $E C$ of the same local current or circait is made, the local circait is never formed

C. L. BUCKINGHAM. DUPLEX TELEGRAPH.

Patented Jan. 31, 1882.
No. 253,154.

3 represents a wodification of devices illus. trated in Fig. 2.
Like letters of reference in the drawings indicate corresponding parts.
 key by means of which main-line batteries if $B M B^{\prime} M B^{\prime \prime}$ are connected to line and earth, and through the agency of robich the poles of the batteries may be rerersed in respect to the io line and earth.
z and y are springs tending to rest upon stops 3 and 4. Main line 7 is joined to stops 3 and 4 by wires 3 and 6. Key $P \mathrm{C}$ is connected to earth through 16.
15 S T and S T' are ordinary continuity-preserving kers, by means of which batteries \mathbf{M} B^{\prime} and $\mathrm{M} \mathrm{B}^{\prime \prime}$, normally cat oat, may be pat in main-line circuit by closing the kess.
Transmitting. keys S T and S T' are located
20 upon a fragment of the main-line circnit, having its ends connected with the springs z and y of key P C, and said fragment consists of conductor 15, battery M B, and branches 13 or 14, transmitting-bey S T, conductor 12, branches
2s 10 or 11, key S T', and cendactor 9. By operation of the pole-chauging key $\mathbf{P} \mathbf{C}$ the opposite ends of this fragment of main-line conductor are alternately reversed from line to earth and earth to line, and vice rersa.
30
It rill be observed that the kers $S T$ and S T^{\prime} are situated at different positions in the length of one couductor, and that the fragment of the main line containing said trans-mitting-kess has ools a single earth-connec-
35 tion, 16. When key $\mathbf{S} \mathbf{T}$ is open battery \mathbf{M} B is closed to line throngh wire 14, containing resistance x. When $S T$ is closed $M B$ is connẹcted to line through battery M B', 13, 31, and 12. When $S T^{\prime}$ is open $M B$ and $M B^{\prime}$ are
40 joined to line through resistance x^{\prime} of 11 , key $\mathbf{S ~ T}, 36$, and 35. If $S T^{\prime}$ be closed, the mainline circuit will not be closed through x^{\prime}, but through M B' ${ }^{\prime \prime}, 10,34,35$, and 9 . Resistances x and x^{\prime} are made equal respectirely to the
45 resistances of batteries M^{\prime} and $M \mathrm{~B}^{\prime \prime}$, since both incoming aud outgoing currents will trarerse either resistances $x x^{\prime}$ or batteries M B^{\prime} M $B^{\prime \prime}$, according to the positions of keys $\mathbf{S} \mathbf{T}$ and S^{\prime}.
$5^{\circ} \mathrm{MB}$ is a reak batterr, whose relative streugth may be represeuted by 1. M B^{\prime} is a stronger battery, whose strength is 2, and $M B^{\prime \prime}$ is of strength 4 . By reversing currents apon the line a polarized armature at the receiring-sta55 tion is operated.

M B^{\prime} and $M B^{\prime \prime}$ are added in circuit by clos. ing keys $S T$ and $S T^{\prime}$ to increase the strength of carrent of $M B$. When keys $S T$ and $S T^{\prime}$ are closed, $M B^{\prime}$ and $M B^{\prime \prime}$, as well as $M B$,
60 are reversed upon the line by operating $\mathbf{P} \mathbf{C}$. The several current strengtlis upon the line are, normally, strength -1 ; key S T closed, ST ${ }^{\prime}$ open, strength $-3 ; \mathrm{key} \mathrm{S}^{\prime} \Gamma$ open, $\mathrm{S} \mathrm{T}^{\prime}$ closed, strength -5; key S T closed, $\mathrm{S} \mathrm{T}^{\prime}$ closed,
65 strength -7. When PC is closed the carrents are respectively $+1+3+5+7$.

It will be seen from this description that my
key system euables eight different conditions of current to be sent to line, and that the bat-tery-sections and resistances are so arranged that a circnit of coustant resiatance is always provided for all incoming and outgoing currents.

SW is a switch by means of which the key system mas be discounected and the line put to earth through resistance G equal to resistance of the key system, wherehy the distant relass may be conveniently balanced.

In Fig. 2, , mich represents niy receiving apparatus, \mathbf{R} is a polarized relay c.sntrolliug local soander S. Relay K resinonds to a reversal of current strength of 1 . It will also respond as well to a rerersal of carrent of strengths 3,5 , or 7 . Thas sounder S will respond while strong carrents operate the nentral relays for independent signals. R is the first main-line neutral relas, aud is nperated by a current of either polarity of streugth 3 or currents Irom M B and M B^{\prime} jointly. $\mathrm{B}^{\prime \prime}$ is the second ueutral relay, and will respond tocurreuts of either polarity of strength 5 or carrents from MB and $M^{\prime \prime} B^{\prime \prime}$ jointly. $K^{\prime \prime \prime}$ is the third neutral relay, which will respoud to either polarity of current of strength 7 or current from M B \mathbf{M} $B^{\prime} M B^{\prime \prime}$ jointly. S^{\prime} is the second local sounder, Which is to be brought into action by key S T. The local circuit of S^{\prime} is opened and closed throagh the agency of the double differential local relay D S.
Relay D S is differentially woond with the 100 t wo branches h aud g of wire w^{\prime}, leading from one po'e of local battery L B'. Brauch h is connected to the back stop of relay $\mathrm{R}^{\prime \prime}$, and brauch g is connected to back stop of relay R^{\prime}, While armatare-lérers o^{\prime} and $o^{\prime \prime}$ of R^{\prime} and $R^{\prime \prime}$ are joined to the opposite pole of $L \mathrm{~B}^{\prime}$. Relay D S is also differentially wound with branches f and e from wire joined to one pole of local battery L $B^{\prime \prime}$. Brauch e is carried to back stop k of relay $R^{\prime \prime \prime}$, from which conuectiou is made threugh the armature $o^{\prime \prime \prime}$ to the opposite pole of. L $B^{\prime \prime}$. Branch f is also conuected with branch e to the same local-battery pole.
It will be observed that the third local sounder is controlled by relay R S, placed in the branch h, forming one coil of the tirst differential set of coils open double differential relas D S.
Coils g and h are oppositely-womnd differential coils connected with the poles of locial battery $L B^{\prime}$. Thas when both brauches are closed the magnetic effects in D S due to $L B^{\prime}$ aro neutral. Also, f and eare oppositely-wonnd differential coils connected with local battery L $\mathrm{B}^{\prime \prime}$, and magnetic effects in D S due to L B when both e and f are closed are ueutral.
The operation of local sounders S^{\prime} and $S^{\prime \prime}$ may now be explained. Nurmally the four brauches e, f, g, and h of the duable differential windings upon D S are clused and no mag. netism is developed to attract armature-lever $a l$; but if a strength of currelt 3 be sent to line of either polarity the neatral relay R^{\prime} responds and lerer 0^{\prime} is withdrawn from back

 -

\qquad
stop i and the branch g is broken, aud D S will be subject to the action of the remaining three coils, e, f, and h. Coils e and f neutralize each other; but coil h develojs magnetism 5 and armature-lever a l closes the local circuit of sounder S^{\prime}. Huwever, when a current of strength $\bar{\delta}$ is sent to line not ouly will armature of R^{\prime} be mored and brauch g be broken, but armature of second nentral relay, $\mathbf{R}^{\prime \prime}$, will so cause $o^{\prime \prime}$ to be drawn from back contact j to break branch h. When branches g and h are both broken relas D S is subject only to the effects of diffirential coils e and f, which are neutral. Therefore aruature-lever a l will
15 not close the local of secund local sounder S^{\prime}. A current strength of 3 is sufficient to break one of four differential branches of D S to destroy magnetic equilbriam, while a curreut strength of 5 operates to breali two branches, 20 andithasre establish magneticequilibriam; but while the breaking of h establishes magnetic equilbrium in D S to leave \mathbf{S}^{\prime} unaffected, the breaking of brauch h denagnetizes RS, and a $b^{\prime \prime}$ moves to its back stop to close the local of $\mathrm{g}^{\prime \prime}$ 25 to give a signal upon the third local sounder. Again, when a carrent due to the joint action of all the batteries or of strength 7 is seut to line both local sounders S^{\prime} and $\mathrm{S}^{\prime \prime}$ should operate. When current 7 of either polarity is sent to 30 line, armature-levers of all the local relays R^{\prime}, $\mathrm{B}^{\prime \prime}$, and $1^{\prime \prime \prime}$ are withdrawn from their back stops, and three of the differential branches, e, g, and h, of D S will be broken, and branch f will alone remain closed, when again the mag35 netic equilibrium of DS will be destroyed and a l will close the local of S^{\prime} to give a signal; also, as h is broken at the same time, $\mathrm{S}^{\prime \prime}$ will simultaneously respond.
In winding the double differential relay with 40 its four coils in branches e, f, g, and h it is appareut that coils of branches f and g mast each be wound and connected to their batteries in such a manuer that they may each tend to polarize D S alike-that is, if f causes a 45 north maguetic pole in the upper part of D S, h likewise shoald be woand to indace a coinfcident north pole iu the apper part of D S. Should f and h iudace opposite maguetic polarities in $D S$ at certain times, a reversal of 50 polarits in D S would occar. For example, if all the branches but f were broken, D S would be charged bs f. Therefore, if f induce a north pole in the upper part and a south pole in the lower part, this polarity would be wholly re55 versed wheu g aloue is broken, as at such time e and f neutralize each other and magnetic effects in D S would be due to h alone. When kes STalone is operated magnetism in D S is wholly due to coils of branch h. When buth
60 keys S T and ST^{\prime} are operated magnetism in D S is wholly due to coil in brauch f. Therefore to avoid a rerersal of magnetic polarity in core of D S coils of branches f and h must both induce in each end of DS magnetism of the 65 same polarity. If both keys $S T$ aud $S T^{\prime}$ are closed to operate both sounders S^{\prime} aud $S^{\prime \prime}$, relay DS will havea given magnetic polarity. If,
now, zey ST' be opened, the polarity of D S will not be rerersed, nor will its magnetic strength even be reduced, and no tiatter of armaturebar a l will occur to mutilate signals upon S^{\prime}. Armature-levers of $\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}$; and $\mathrm{R}^{\prime \prime \prime}$ all close the local sounder-circuits apon their back contacts. Thas when the armature-lopers are attracted a rerersal of line-current that rould reverse the magnetic polarity of $\mathbf{R}^{\prime}, \mathrm{R}^{\prime \prime}$, or $\mathbf{R}^{\prime \prime \prime}$ rould occur too rapidly to permit the arma-ture-lerers to close one back contact, even if they were to move back slightly from the poles of the relays.
To still farther obviate all possible difficulty from the momentary release of the relay-armatures apon reversal of current, I introdace between relays R and R^{\prime} condenser C, which is joined by condactors 25 and 27 , respectively, to main line L and artiticial circuit G C. If a current from line passes over L A to $G^{\prime \prime \prime}$ it will charge condenser \mathbb{C} in such a manner that when the line-carrent is broken the condenser will discharge and effect a continuation of the preriously-broken current ap to the time that a reverse carrent is sent orer the line, thas filling the gap in the current at the moment of reversal. The discharge of the condenser occars through the circuit $25, \mathrm{~L}$ to $\mathrm{L} A$, thence over G C and 27 back to coudenser C. Tbis device, horrever, is corered in my Patent No. 191,439, of 1877, aud I make no claim to it in this application.

A farther part of my in rentiou consists in employing local magnets m and m^{\prime} rith relays R^{\prime} aud $R^{\prime \prime}$. Armatare of relas R^{\prime} is obliged to act ander three different strengths of carreut, while armatare of $\mathrm{R}^{\prime \prime}$ is operated by two differeut strengths of carrent.
It is desirable that a definito ratio be estab. lished between the attractire and retractile forces apon a relay-armatare. If the current be stroug, the tension of the retractile spring should be adjusted high. Tbus, if the retract-ing-spring of relay R^{\prime} be adjnsted for a curreut strength of 3 , its adjustment would be wrong for a carrent-strength of 5 or 7-that is, the tension of the retractor would be too low.

To compensate for a ligh strength of carrent I.canse a local circuit to be closed by the effects of such a high strength of carrent, and the local circuit acts in aid of the weak retractor. If spring \& of relay R^{\prime} is adjusted for a current of strength 3, a current of strength 5 would orerpower s; bat as the current 5 actuates armature of $\mathrm{R}^{\prime \prime}$ to close on front contact local circuit of battery B and magnet m, m acts in conjunction with s, and the retractile force upon lever o is automatically increased and made to bear the same ratio to the carrent 5 that the force of spring 8 alone bears to force of current 3. It is obrions that according to the same plan the retractile force of a could be still further aided by calling in more local battery by the action of relay $R^{\prime \prime \prime}$ when carrent of streugth 7 is sent. A local electro-magnet, m^{\prime}, is applied in the same manner to aid the retractile force of $\mathrm{s}^{\prime} . m^{\prime}$ is only called into ac-號90
tion when a current of strength 7 is sent to line.
Local electro-magnets m and m^{\prime} will act upon their respective armatures when armatures o^{\prime}
5 and $o^{\prime \prime}$ of $R^{\prime \prime}$ and $R^{\prime \prime \prime}$ are apon their front contacts; bat, should the front coutacts be momentarily broken by rerersals of the main-line carrent, m or m^{\prime} woald exert a variable retracting force. Toaroid such difficulty I have placed 10 springs 40 and 41 apon the ends of armatarelevers $o^{\prime \prime}$ and $o^{\prime \prime \prime}$, learing a slight rauge of movement of the armature without breaking the local of m or m^{\prime}. Thus the front contact may be preserred eren if armature-bars o^{\prime} and $15 \boldsymbol{o}^{\prime \prime}$ are slightly vibrated apon rerersals of cur. rent.
Itisobvious that many equiralents of springs 40 and 41 may be employed to preserre a frout contact to aroid breaking the locals of m or $20 \mathrm{~m}^{\prime}$, and I do not limit myself to the use of springs alone.
Fig. 3 illastrates a modification of the receiving system shown in Fig. 2. Fig. 2 shows a third neatral relay, R'", which responds only 25 to carrents of the highest tension. Instead, however, of employing a separate relas, $\mathrm{R}^{\prime \prime \prime}$, which shall respond ouly to carrents of the highest tension, I may modify the relay $\mathrm{R}^{\prime \prime}$, which, as shown in Fig. 2, only responds to deringts of the next highest tension by rento a ${ }^{\text {a }}$ the armature of said relay susceptible rent and to a further morement by the high. est or greatest strength. The fanction of $\mathbf{h}^{\prime \prime \prime}$ result may be accomplished br a second or additional morement of the armature of $R^{\prime \prime}$. Fig. 3 shows a relay, $R^{\prime \prime}$, substantially the same as relay $\mathrm{R}^{\prime \prime}$ of Fig. 2 , with the exception that the anril, but a lerer, $o^{\prime \prime \prime}$, held by a retractile spring, $\mathbf{8}^{\prime \prime}$. The next to the highest strength of current emploged is sufficient to attract armatare $0^{\prime \prime}$ and overcome spring s^{\prime} against the lerer $o^{\prime \prime \prime}$; prer stagth of cumentis not adequate to overcome the retractile spring $s^{\prime \prime}$. However, by an additional strength of current not ouls is armatare $o^{\prime \prime}$ attracted and spring s^{\prime} overcome, bat the lever $0^{\prime \prime \prime}$ is moved from its stop

$$
50
$$ e is brokev. It is therefore to be observed that the first morement of armature $o^{\prime \prime}$ serves to break the branch h, while the second morement of that due to the Lighest strength of current 55 canses the branch e to be broken.

Throaghout this specification I bave designated the strengths of battery as bearing the relation of one, tro, and four to each other, though I do not limit myself to sach propor-
60 stances be widely raried.

While I hare thas far described my invention as an element of a sestuplex telegraph, it is obvious that I could dispense with the pole-
65 changing key $P C$ at the trausmitting-station and the main-line polarized relay R and local sounder S at the receiring-station, and thereby
have a complete quadruplex capable of operation without reversals of current. My device therefore will enable donble sending from one. end of a line by changes of tension of current alone.

In an earlier application for a patent filed by we I hare specificalls set forth and claimed a transmitting or key system arranged upon a single conductor, consisting of the combination of a fragment of said conductor and a series of transmitting-kess thereon and tro branch conductors at each transmitting-key, throogh either of which branches the mainline circuit may be established, oue of said branches being normally open, haring thereon a section of main-line battery, and the other branch normally constitating a portion of the main-line circuit, having an artificial resistance 8 sabstantially equal to that of the battery and the normally-open branch, the two branches of each key being so combined with said key that by its morement the two branches may. each separately and alternately be placed in the main-line circait; wherefore I desire to disclaim such matter from this case in favor of my application of earlier date when not emplosed in combination with a pole changing key.

What I claim, and desire to secare by Letters Patent. is-

1. In ansystemior stmutaneous tiansunssion upou a single line, a transmitting or key system arranged apou a single couductor, consisting of the combination of a fragment of said conductor, whose ends mary be reversed: by means of pole-changing key in respect to the earth and main-liue counections and a series of tension-cbauging transmitting-keys thereou, and two branch conductors at each trausmitting-key, through either of which brauches the main-liue circuit may be established, one of said brauches being normally open and haring thercon a section of mainline batters, and the otber branch normally constituting a portion of the main-line circait, haring au artificial resistance substantially equal to that of the battery in the normallyopen branch, the two brauches of each key also being so arranged with said key that by its movement the two branches mas each separately and alteruately be placed in the mainline circuit, substantially as described.
2. A fragnentary portion of a main-liue cou- 120 luctor, the opposite ends of which are connected to a main-line pole-changer, said fragmentary portion of the main line having its continuity preserved through the branches haring the resistances $x x^{\prime}$ when the trauswit-ting-keysare upou their back stops, and through the battery-branches of M B^{\prime} and M $B^{\prime \prime}$ when thekersare upon theirfrontstops, substantially as described.
3. The combination, substantially as de- 130 scribed, of the pole-changing key P C, connected to earth, conductor 15, main-line battery M B, branches 13 and 14 , having respectively sectious of battery $\boldsymbol{M I}^{\prime}$ and resistance x,

75

[^1]\qquad 0

 100 100

\qquad 105 ${ }^{10}$

${ }^{1} 5$

|[2, ||AV/|||
(No Model.)
J. W. LARISH. MOLTIPLE TELEGRAPEY.
No. 257,499.
Patented May 9, 1882.

Sritncses.
Jrikiclinghaco.

> line side of relay M with a force, say, of trentytire. At same moment an induced carrent is excited in shant D (which is of adjustable strength) with a force of trentr-fire, and this
> 5 current, going through relay M in an opposite direction to current or static charge on true line side, serres to neutralize and orercome it. Consequently no effect is prodaced on the home relay M, and the signals are therefore not mn30 tilated.

The secouitucticentersiotlome-When the line is thrown from battery to carth an extra current excited by bome battery passes to earth through home relas M. This carrent of
15 course raries in strength with the length and conditions of the line. Let us say on a line of five hundred miles the extra current has a force of fifty. It is therefore found necessary to throm a current (by means of the second derice) hav-
30 ing a force of fifts through artificial side of relay M, and in an opposite direction in relay to extra current from truc line, whereby the effect of exira carrent on relay is neutralized and orercome, so that no mutilations of signals are
25 felt at home station. At the same time the lever of the repeating - sounder F is released. Immediately thereafter contact is formed between the poiuts at f, but is no sooner formed than broken by raising the insulated spring 8
30 from the post p. . At the instant of contact a carrent from the battery A passes throngh the points $f s p$ and the lever of the repeating. sonnder F, through the rheostat R, to the artificial line, thence throngh differential relay M,
earth. A sufficient portion of this momentary carrent (regulated by resistance R) passes throngh the magnet M to neutralize the effect of the extra or induced current from true line
40 on long circaits where the conditions thereof require it, thus doing amar with condensers. Upon closing the local circuit the circait through repeating-sounder F for the current from A is broken by the repeating - sounder 45 before contact is made at $f, 8$, and p.

The following is a description of the transmitter B, (see Fig. 2:) n is a metallic frame on a rooden base. a^{\prime} is au adjustable screv set in frame n. $a^{\prime \prime}$ is a spring; b, a lever, with same base as n. h is a metallic frame resting on same base with n and b^{2}. f is a small metallic arm extending from lever b, and insulated from it at $f^{\prime} . p$ is an adjustable screw 55 insulated from frame h at p^{\prime}. s is a metallic spring insulated from h at 8^{\prime}. d is an adjustable screv set in $h . o$ is an electro-maguet. Spring $a^{\prime \prime}$ is iusulated from b at $a^{\prime \prime \prime}$. 20 is an arm attached to lerer b, x is a coil-spring
60 fastened to arm w, and held by an adjustable scres and nut to frame h. $b^{\prime \prime \prime}$ is a soft-iron bar acted nuon by the magnet o.
The operation of this transmitter in counection with the system has been bereinbefore
65 fulls described. The novelty of its constraction consists in putting a momentary current
through points f, s, and p after the lever b has left its point of rest at the bottom, and breaking the connection again at s before lever b
comes to a rest at screw d on the upstroke, so that a charge from battery A is thrown through these points f, s, and p, ouly for an instant, while lerer b is in the center of its stroke between point k and end of screw d.

The constraction of the other parts of this device is similar to transmitters used by the Western Union and other telegraph companies.

L represents the local receiring-sonnder and the local current c, by which it is operated in connection with the differential relay M .

I claim-
 mitter 1 B , differential relay M, electro-magnetic shunt D, rheostats E and R, repeatingsounder F, circuit-breaker K , aud the local circaits c and c^{\prime}, and the metallic couductor (wire or othermise) connecting battery A with metallic arm f of transmitter B, the metallic conductor connecting adjustable screw p rith ar: mature of repeating-sounder F, metallic condactor connecting repeating-sounder F with artificial line throagh adjustable resistance R, all arranged and operatiog substautially in the manuer aud for the purpose specified.
2. The combination of elements or parts in a system of multiple telegraphy, consisting of a metallic connection betireen battery A and point f on transmitter B, a like connection between set-screw p on transmitter and armature on repeating-sounder F, a like counection betreen set-screw of frame of repeating-sounder F, throngh resistance R, to artificial line between rhcostat E and differential relay M, is like connection from rbcostat E, or any point between it and differential relay M, through electro-magnetic shant D, to point of division C, all combined and operating as described, and in combination with the local circuit ecc, with circuit-breaker K, whereby repeatingsonnder F is worked in same circuit with transmitter B, as specified.
3. An improred transwitter, B, one part constracted substantially as those in common use, with continuity-preserving points, a lever with fulcrum in the center, said lever operated by an electro-magnet, and in combination with circuit-breakiug or contact poiuts at the opposito end to the continuity-preserving points, consisting of a metallic arm, f, extending from lever b and insulated from it at f^{\prime}, an adjustable scrers, p, insulated from frame l at p^{\prime}, and a metal spring, s, insulated from h at s^{\prime}, all arranged and operating in this system of multiple telegraphy substabtially as described.

In ritness whereof I have heremato sigued 125 my name in the presence of tro subscribing mitnesses.

JOSEPH W. LARISH.

Witnesses:

J. R. Drake,
J. W. Tililinghast.
J. VY. MILLINGBAST.

ment, or in establishing a temporary connection between the terminals of the electro-magnet of the receiving-instrament, or preferably in performing both these operations simultane-
5 ously at the instant a connection is formed between the line and the battery or the earth at the home station.
The invention also consists in certain combinations of electric circuits and of mechanro ism whereby the hereinbefore-mentioned results are effected.
The accompanying drawing is a diagram representing the apparatus and electrical connections at one terminal station of a daplex
15 telegraph to which my iuvention has been ap. plied.
Referring to the diagram, E represents the main battery, the negatire pole of which is connected directl ρ to the earth at G in the 20 usnal manuer.
T represents the lever of the transmitter, which is preferably actuated by an electromagnet, t, placed in the circait of the local battery l, (represented by a dotted line,) which
25 is opened and closed by the manipalation of the key K. Upon the transmitter-lever T is mounted an insulated contact-spring, a. This normally rests against a contact-stop, b, formed apon the end of the lever T, which is there-
30 fore termed the "resting-stop." Just abore the contact-spring a is placed a fixed stop, c, in such a relative position thereto that when the transmitter-lever T is actuated by depressing the key K the contact-spring a is 35 brought against the stop c, which is termed the "working contact," and at the same instant the contact between the said spring and the stop b is interrupted. The positive pole of the main battery E is connected by a conduc-
40 tor, 1 , to the stop c. The lever T of the transmitter is connected directly with the earth by a conductor, 8 . A conductor, 2 , is attached to the insulated contact-spring a, and divides at the point 3 into two branches, 4 and 5 . The
45 brauch 4 extends to the point 6 , where it joins the main line L extending to the distant sta: tion. The other branch, 5 , extends to the point 7, where it joins the artificial line A, which returns directly to the earth at G . Be-
50 tween the point 6 on the main line and the point 7 on the artificial line, a bridge-wire, \mathbf{B} B^{\prime}, extends, (which, for the present, may be regarded as a normally-closed or continuous circait,) in which is incladed the electro-magnet
55 M of the home receiving-instrament. Rheostats or adjastable resistances $r r^{\prime}$ are inserted in the wires 4 and 5 , respectively, and another rheostat, R, is placed in the circait of the artificial line A. In aecordance with the well-
60 known laws of electrical conduction, it will be evident that, if the amount of resistance in the rheostat R is made exactly equal to that of the line-wire L leading to the distant station and the resistances r and r are made equal to each
65 other, no carrent will pass through the bridgewire $B^{\prime} B^{\prime}$ between the points 6 and 7. More-
orer, the result will be the same in any case in which the proportion of the rheostat r to the line L is the same as that of the rheostat r to the artificial line A, inclasive of the rheostat R . The rheostat R is preferably made adjustable, in order to compensate for the varying resistance of the main line under different conditions of insulation.
The organization which I lave thus far described is well known and in common nse, and in itselfforms no partofmy invention. Its practical operation is astollows: In trausmitting a signal from the home statiou the key K is depressed by the operator, which causes the elec-tro-maguet t to attract its armature, and thereby raise the opposite extremity of the transmitter T. This brings the insulated spring a into contact with the stop c, and thereby forms a connection between the battery E and both the main and artificial lines, L and A. In consequence of the inductive capacity of the line L, a current of charge traverses the wire 4 at the instant the battery is connected therewith, which carrent is not compensated by any cor: responding carrent of charge in the wire 5 , and consequently a difference of potential is cansed between the points 6 and 7 and a false signal is prodaced upon the receiving-instrament. So, also, when the key K is released and the contact-spring a is detached from the battery-contact c and connected with the earthcontact b, a corrent of discharge takes place through the wire 4, which, in like manner, is notcompensated by any corresponding carrent in the wire 5 , and thas another false signal is produced.
I will now describe the improved apparatas which I have invented, bs means of which this difficalty is obviated.
Upon the lever of the transmitter T is mounted a rigid insalated arm, f, which is capable of adjustment with reference to the position of the lever apon which it is monnted by means of a screw, i, or any equivalent derice serring the same parpose. The arm f is \mathbf{V}-shaped at its extremity, and this portion of it, when actuated by the movement of the transmitterlever T , is brought into contact with a redgeshaped projection or tooth, e, moanted upon a flexible spring, d, which is attached to a suitable fixed sapport, d^{\prime}. The spring d is also provided with a contact-point, which normally rests apon the adjustable contact-screw g. The two parts of the bridge-wire, \mathbf{B} and B^{\prime}, are respectively connected with the spring d and the contact-screw g. The insulated arm f is also connected, by means of the wire h, with the point 7 at the janction of the bridge-wire B^{\prime} and the artificial line A . By an inspection of the diagram it will be anderstood that when a connection is formed between the wires B^{\prime} and h they act to shunt or short-circuit the coils of the electro-magnet M of the receiving instrument.
The practical operation of the hereinbeforedescribed organization is as follows: When
unites the terminals of the electro-magnet of the receiring-instrument, and a circuit-changer actnated by said key or transmitter, whereby said bridge-wire is interrupted and said shantcircuit simultaneonsly closed at the instant the connection between the battery and the main and artificial lines is either broken or closed.

In testimony whereof I hare hereunto sabscribed wy name this 7th day of Jane, A. D. 10 1881.

STEPHEN DUDLEY FIELD.
Witnesses:
Wmitam H. Kentoon, Miller C. Earl.

No. 258,366.
Patented May 23, 1882.

United States Patent Office。

CEARLES L. BUCKINGHAM, OF ELIZABETH, NEW JERSEY, ASSIGNOR TO THE WESTERN UNION TELEGRAPH COMPANY, OF NEW YORK, N. Y.

DUPLEX•TELEGRAPH.

SPECIFICATION forming part of Letters Patent No. 253,386, dated May 23, 1882.
Application filed Jone 16, 1821. (ATo model.)

To all whom it may concern:
Be it known that I, Charles L. BockingHam, of Elizabeth, county of Union, aud State of New Jersey, have inrented a new and use-
5 fal Improrement in Telegraphy, of which the following is a description, reference being bad to the accompanying drawings, forming a part hereof.
 systems of telegraphy for the simultaneous transmission of messages apon a single line in opposite directions, aud has for its special object the nentralization in the receiviug-instraments of duplex, quadraplex, or sextuplex te-
15 legraphy of disturbing effiects due to static indaction upon the main line; and to this end I employ at each station a normally.closed bridge or branch conductor to join the main and artificial lines. The bridge or brauch conductor
20 is normalls closed through a contact-point and the armature of an electro-magnet, and the position of said armature, whether to open or close the bridge, depends npon the carrents which are transmitted br the keys of the home
25 and distant stations. When only signals are being sent from the home station the bridge remains closed, and from this fact equal strengths of current will How through the two oppositels-round coils of the home receiving-
30 relay both while the main line is receiving its inductive charge and thereafter, during the continuance of a sigual and after the maiu line has received its full inductive charge.

35 telegraphy that in a differential duplex while the main line is receiving its inductive charge a stronger current will flow throngh the mainline ccil than through the oppositely-round coil in the artificial circuit, and that the differ40 ential receiving-relay will respond to gire a false sigual. The bridge, howerer, which I employ effects a complete balance of currents sent through them from the home station. Following each signal that is sent from the home 45 station is a quick static or inductive discharge from the main line in a direction opposite to that of the current of charge. The direction of the current of inductive discharge is such as to tend to cause the bridge to be broken. 50 Howerer, the armature of the bridge is so ad-
justed that the bridge will practically remain anbroken from the effects of sach indactire discharge, and it will distribate itself in passing to earth equally through the two oppo-sitely-wound coils of the receiving-relar, and nofalse sigual.will follow. While the bridge will not be broken by a quick inductive discharge from the main line, a battery-current sent from a distant station sufficiently prolonged to produce a sigual at the home station will canse the bridge to be opened and remain open during the signal, wherefore the carrent will only pass through one coil of the bome receiving. relay and a signal will be giren. By this means the main-line inductive charge and discharge produce neatral effects non receivingrelass when siguals are seut from the same stations, and this end is accomplished without the necessits of adjustment to change the elec-tro-static capacity of an artiticial line to balance the highly-variable inductive effects of the main line.

I will now explain mg inrention by refereuce to the accompanving drawings.

Figure 1 represents an oratiary duplex sys-75 tein in which the bridge at each station is broker by meaus of an ordinary differential electromagnet whose coils are in the main and artificial lines, respectirely. Fig. 2 shows a modified megans for breaking the bridge-con- 80 ductor, which consists of a polarized relay whose coil is in the main line alone.
rurig., , a aud B represent two distant stations, joined by a inain line, L.

M and M^{\prime} are two main-line batteries, ar. 85 ranged to oppose each uther when simaltaneously comnected to line. In all other respects the devices of station B are identical rith those of station A, aud a description of apparatus of one statiou will suffice for that go of both.
R is an ordinary differential receiving-relay, haring oppositely-wound coils x and y, forming parts respectirely of the main and artif. cial circuits, and c is its armatare-tongue.

K is an ordinary continuity-preserving key.
T is a resistance placed in the artificial circait eqnal in amount to the main-line resistance. The artificial line is connected to earth at E^{2}.5
80
\qquad
S is a differential electro-mnagnet altogether
similar in general respects to relay R, its coils
z and w being oppositely wound and forming
parts of the main and artificial lives.
52 and 3 are points in the main and artificial
lines, joined rith a bridge or branch coulact-
or of very low resistance, thich is normally
closed through armatire a and stop b.
r is a small rheostat for establishing a proper
to proportion of resistances of condactors betreen
points 1 and 2 and 1 and 3.
When K is depressed the current of battery M
divides at point 1,one portion passing throngh
coils x and z and the other through coils y and
15 20 of the relay R and electro-magnet S. When
the two portions of the current thas divided are
equal the electro-maguetic effects of x and y
are nentral, also those of z and v; but owing
to the greater capacity of the main than the
20 artificial tine for a static charge the carrent
from M at the beginuing of each sigual, if there
be no compensating derice, will be strouger
tbrough coils x and z of the maiu line than
throngh coils y and $v o$ of the artificial circuit.
bridge which is normally closed, it is obrions
that antil sach bridge is broken the current
Howing throagh coil x must equal that passing
through y, eren if the current which flows to
that flowing orer the artificial line from point
3 to E^{2}. Primarily, therefore, owing to the
normalls-closed bridge joining points 2 and 3 ,
the carrent of M will be divided equally through
an coins x and y; bat while the brige causes
an equal division of current between coils x
and y, more carrent at the same tine will How
through coil z than $v o$, wherebs S will become
magnetic and tend to attract its armature.
ture a, if
be broken until the main line will hare received
its inductive charge. After the line has re-
ceived its inductive charge the carrent from
immaterial if the bridge be momentarily broken.
When the resistance of the bridge compared
with that of either x or y is practically zero,
and resistances of x and y are equal, it will be
50 observed that at the moment of charging the
main line, when more current is flowing into
said main line than to the artificial circuit, a
corrent will be set ap in the bridge from 3 to.
ward 2, and that the division of carrent at
55 point 1 will be equal through x and y.
The removal of battery 1 a fter sending each
sigual is accompanied by a static discharge op-
posite in direction to the corresponding current
of charge. The carrent of static discharge which
60 would otherwise pass through only coil x of
the differential relas \mathbf{R} dividesequally at point
2,one portion passing to earth by coil y and the
other by the oppositel y-moand coil x, whereby
the effects of static discharge are neatral npon
65 the receiving.relas. As the static discharge
from the line passes through only one coil of
\mathbf{S}, it will tend to break the bridge; but by a
proper coustruction of S and adjustment of a
the bridge mill not be broken before a com-
plete discharge can occur. While the static
discharge of the main line is not sufficient to
canse the bridge to be broken, a-sufficiently-
prolonged carrent from a distant station to
make a telegraphic character will attract ar-
mature a and retain it during the time of the
signal, and the curreut will thereby pass wholly
through coil x to effect a sigual. If the bat-
teries M and M^{\prime} are,both simultaneously upon
the line, and battery M be then remored, the
accompanying static discharge will not nea-
tralize itself bs passing throngh both coils x
and y, as the bridge is broken when both bat-
teries are to line, and so remains when M
is remored. The static discbarge ander this
condition discharges wholly through x; but 8_{5}
this will prodace no false signal bs attracting
c, as c is already attracted from the agency of
the closed key at the distant station. Thestatic
discharge will therefore only conspire to bold

- in its proper position.
I will now descrive my modification illus.
trated in Fig. 2.
S is a relay baving a polarized core and a
polarized armature-tongine, a, for the parpose
of breaking and closiug the bridge-conduetor
joining points 2 and 3 , the functions of which
are fully set forth in the description of Fig. 1.
The coil of S is in the main line, and when no
carrent is tlowing throngh said coil the polar-
ized armatare a is repelled, as the magnet-
isms of a and the adjoining end of S are of like
polarity-say north. When a current is sent
from M the armature is more strongly repelled,
as the direction of the carrent is sach as to in.
dnce north magnetism in the cud of core S fac-
ing a; but when a carrent is receired from a
distant station to effect a sigual the armature
will no longer be repelled; but the magnetism
of the core will be reversed, the armature will
be attracted, the bridge will be broken ${ }_{\text {a }}$ and a
signal received. The retractile force of the
armature, however, is so adjusted as not to be
materially moved by the static discharge from
the liue, thongh its direction be the same as a
current giving a signal. By means of the po- 115
lar circuit-breaker the bridge cannot Dy any
possibility be broken wheu the line is receir-
ing its iudactive charge, as its action is wholly
independent of the current of the artificial Ine.
Howerer strong aud prolonged the effiect of 120
static charge, polar armature a will not be
moved and equality of current strength in coils
x and y will remain unchanged.
I do not herein claim the combination at each
station of a main line, an artificial compensat-
ing-circait, a receising-instrament, a bridge or
branch conductor connecting the main and ar-
tificial lines, and an autowatic circuit-breaker
for opeuing and closing said bridge, since I
shall claim said combination in a separate pat-- 130
ent.
WhatI claim, and desire to secare by Letters
Patent, is-

1. Tue wetrod, suostantially as spectifed, of

to the condenser, and thence to earth from the other pole of the condenser, thas finding a path to earth short of the relay. By winding the condenser branch into an electro-magnetic 5 coil upon the nentral relay not only does the carrent due to the charging of the condenser excrt a beneficial effect by passing through the primary coil of the relay, bat it also acts through the secondary coil forming a part of to the condenser branch. Upon connecting a battery to line at the transmitting end the carrent due to the charging of the condenser would first act to attract the neutral armature of the distant relay in advance of the estab.
is lishing of a full carrent at the earth end of the line, and apon removing the battery from line the discharging of the condenser scts up a carrent which continues to hold the armature of the relay toward its core. The dis20 charge of the condenser occurs immediately upon a cessation of the main-line current at the receiving end, due to removing the battery from line at the transmitting end; but the carrent of the condenser-discharge estab-
25 lishes an opposite polarity of magnetism in the relay from that set up by the preceding main-line carrent. Thas at the moment of cessation of the main-line current the condenser current, discharging only feebly at first, acts 30 differentially, or in opposition to the main-line current, and gradually increases in strength until the main-line current has become materially redaced, when the magnetism of the nentral relay becomes reversed. The carrent 35 of discharge from the condenser at the termination of a battery-carrent acting in a direction opposite to that of the battery-current upon the neutral. relay prodnces a magnetism in said relay of the same polarity as a reverse 40 battery-carrent. Thas if the main-line current is reversed the discharge of the condenser following the first direction of carrent acts in the same manner apon the nentral relay as the reverse carrent. The condenser-discharge
45 precedes the battery-current reversal, and bridges over any absence of carrent at thereceiving end of a long line daring said reversal, and while the main line is discharging and recharging. The period of reversal is thus ren50 dered only momentary, and continuies only while the main-line current is falling and the condenser is beginning to discharge.

Figure 1 is a diagram of a diplex-telegraph apparatus in which one message is transmit55 ted by reversals of carrent independently of changes in strength and received upon a polar relay, and in which a second message is transmitted by change in currentstrength independently of reversals of current and received upon
60 a neatral relay. Fig. 2 is a diagram showing a quadruplex set at one end of the line-that is, a set of transmitting and receiving instraments at one station in which two messages, one by reversals and the other by changes in
65 current strength, may be received from a distant station, while simultaneously two separate messages, one by reversals and the other
by changes in current strength, may be transmitted to the distant station.
In Fig. 1 L is a main line normally inclading a weak battery whose poles may be alternately reversed by key Tr An additional section of battery may be added and removed in a well-known manner, and as indicated in the diagram by T^{\prime}. Key T^{2} normally serves to reverse the small section of the battery while key T is open, and to reverse the entire battery when key $\mathrm{T}^{\text {i }}$ is closed.
M is a receiving-instrument which is only responsive to reversals of main-line current, whether of asection only or of the cutire mainline battery:
N is a nentral relay responsive only to changes of current strength, and not to reversals. The neatral relay N is provided with coils n and p.
n is the primary coil of the neutral relay, and forms a portion of the main line I, which is connected to earth by a resistance, R, of sereral hundred ohms. Coil p, beginning at point 1 of the main line, is wonnd apon the relay-core as though it were a continuation of coil n. The wire c of coil p, begiuning at point 1 , is continued by wire e to the apper pole of condenser C, while the opposite pole of said condenser is connected by wire d to point 2 of the main line, and thence to earth. Resistance R should usually be of foar handred or five handred ohms. It must, however, under all circumstances be safficient to canse the condenser to receive an adequate charge for the parpose required. It will therefore be seen if a main-line current were passing from the transmitting-station over line L and through coil n that while line L through coil n was receiving its charge only a small current would be established, owing to the resistance R. If, however, the resistance R were removed and the current were afforded a free passage to earth, or to any other reservoir offering no resistance, a strong current would be established through coil n almost at the instant that the carrent in the line had become established through said coil.

To enable the establishment of a current ins throngh coil n, and before it could otherwise be established owing to resistance R, connection is male from point 1 by wires cand e with the opper pole of condenser C. When a current arrives at point 1, instead of being compelled to pass wholly over resistance R, a great portion will pass by wires c and e into the condenser, and while the condenser is receiving its charge a strong carrent will necessarily be set up through coil n. The adrantage of condenser C is thins apparent, whether coil p is included in the wires c and c or not. However, by including the coil p in said wire, not only does the condenser afford a free path for the main line to flow into, but all of the current flowing into said condenser passes around to coil p, and therefore enables coil p to establish a-magnetic action helping that due to coil n.
relay and the earth, rather than between the transmitting-station and the relay, is appar-
5 ent from the fact that if the condenser were connected to the line between the relay and the transmitting-station any carrent flowing into the condenser would in no wise add to the current flowing through the primary coils of to the neatral relay. If a battery were first connected to the main line at the transmitting. station, as has before been stated, a perceptible length of time would be required for the main line to receive its charge at the re-
15 eeiving end, and if the battery, after the line had become fully charged, were removed from line, a period would also be reqnired for the discharge of sain line. Now, if the line has been fally charged and the battery
20 is removed at the instant the carrent on the main line diminishes, a current of discharge from the condenser will flow from said condenser over wirc e, through coil p, wire c to point 1, resistaice $R_{\text {, }}$ point 2, and by wire d to
25 the opposite pole of the condenser, thus tending to establish magnetism of a polarity opposite to that established by the preceding mainline current, and as the main-line carrent still further diminishes the condenser-discharge
30 will increase antil finally magnetism dae to the condenser-discharge will exceed that due to the diminished main-line carrent antil the magnetism in the nentral relay will become reversed. Thas it is seen that from the 35 action of the condenser a reversal of magnetism in the neatral relay will occar before the main-line current at the receiving end has been fally discharged, and that the fanction of the condenser is to obliterate all ef-
40 fects commonly known as those dne to "tailings." Upon removing a main-line battery, as has just been seen, a reversal of magnetism in the neatral relay occurs from the action of the condenser-that is, from the discharge of the
45 condenser in a direction opposite to that of the preceding main-line carrent. Now, if the main-line current is reversed, the succeeding or reversed main-line current will be in the same direction as that of the condenser.dis-
so charge due to the preceding main-line current. Thus the condenser-discharge in each instance sets up a carrent in the neutral relay in adrance of each sacceeding main-line carrent, and no interval which might otherwise
55 occar between two reversals of current at the distant end, owing to the time required for the line to discharge and become recharged, can occar. With the condenser, instead of there being any perceptible interval in the discharge
to of the line at the receiving end and the recharge of said line, the reversal occurs at the very instant that the main-line current has discharged below a certain amonnt. Thus the armature of the neatral relay at the time of cur-
65 rent reversals will be firmly held at front contact, and will not have time to be withdrawn to its back or working contact by its retract-
ing-spring. In a quadraples arrangement, where transmission mast be effected without cansing false signals upon the associated re-ceiving-instruments, it is necessary that the 70 condenser branch shonld be connected by wires c and d (see Fig. 2) to points of equal potential, Figs. 1 and 2, of the main and the artificial lines. Therefore the resistance R of, say, four hundred and fifty ohms, in the main line between m and 1 must be supplemented by an equal resistance, R^{\prime}, between points m and 2 on the artificinl line b. If the resistances \mathbf{R} and R^{\prime} were not sabstantially equal in a differential system, the potentials of points 1 and 2 would not be equal, and currents transmitted from this end of the line would canse condenser' C to be charged and discharged with each transmission from the home station, thus cansing false signals upon relay N , which shoald only be responsive to carrents from a distant station. As will be seen by inspecting Fig. 2, a current arriving from a distant station over the main line will pass through relay M, neatral relay N, and thence by wire a to point 1. At point 1 the carrent will divide, a portion flowing over resistance R and thence to earth. Another portion of the current will flow from point 1 by wire d to one pole of condenser C, thence from the other pole of the condenser by wire e to coil p, and from coil p by wire c to point 2, and thence through resistance R^{\prime} to point m and to earth. As has been described in connection with Fig. 1, it will be readily seen by inspection of Fig. 2 that the carrent set ip in coil p by the condenser-discharge will serve to bridge over reversals in the main-line carrent, and will therefore prevent the retraction of the armature-lever daring sach reversals, and the consequent matilation of signals upon the sounder of the neatral relay.
What I claim, aud desire to secare by Letters Patent, is-
 tem, the combination of a nentral relay, and a condenser connected to the main line at a point between the neatral relay and the earth at the receiving end and to the earth.
2. In a diplex or quadruplex telegraph system in which reversals of current are employed for the transnission of one set of sig. nals, a nentral relay, a resistance between said relay and the earth at the receiving end of the line, and acondenser whose opposite poles are respectively counected to the earth and to the main line between the relay and the earth, sabstantially as shown.
3. In a diplex and quadruplex telegraph sys- 125 tem in which reversals of carrent are em. ployed for the transmission of one set of signals, a neatral relay provided with two coils, one of which is embraced in the main line and the other in a branch, which branch also includes a condenser and is connected with the main line at a point between the earth and said neatral relay and with the earth, substantially as described.

United States Patent Office.

JOHN MUIRHEAD, JR., OF WESTMINSTER, ENGLAND.

IMPROVEMENT IN CONDENSING RESISTANCE FOR ELECTRIC TELEGRAPHS.

Specification forming part of Letters Patent No. 208.665, dated October 1, 1878; application filed May 15, 1878.

To all whom it may concern:
Be it known that I, John Muiriead, Jr., of $\because 9$ Regent street, Westminster, England, have invented new and nseful Improvements in Electric Telegraphs, and in apparatas con:nected therewith, which improrements are fully set forth in the following specificatiou.

This inrention has for its object to constract an accumalator having also power of conduction, which is adjusted to the requirements. Such an accumulator can be constructed combining both the conductive resistance and capacity required to imitate exactly a real line, amd, so constructed, is specially adapted for use in duplex-working systems, and may be called an "artificial line." The artificial line may be coustructed with two strips of tin-foil, (or other thin metallic sheet,) laid one over the other, and separated by an insulating material. Each end of one of the strips of metal foil is connected with counecting-clamps on the instrument. and is arranged in one continuous line to the length required, so that the resistance of the entire length of thin metal comes into play. The other strip of metal foil is turnished with earth-connections. The con-ducting-strips are made of proper dimensions to gire the desired resistance and amount of surface; or, instead of employing two strips, a single strip which will give the requisite resistance aud capacity may be arranged, as above described, on one side only of the dielectric, while on the other side a continnous metallic sheet, equal in superficies to the whole of the area of the dielectric over which the tinfoil strip is spread, may be nsed in counection with the earth instead of a second strip. The two strips, with the nou-conductor betreen them, are folled into a convenient shape.

The ray in which this instrument is used in dnplex telegraphy is as follows: The current established by each contact made by the sig-naling-key is caused to divide into two parts. One part is passed through the actual cable, and affects the indicator at the receiving end, and the other part is caused to pass through the accumulator by the continuous strip of thin metal attached, as before mentioned, to the connecting-clamps, and so this portion of the current passes to earth. The other strip
(or strips) of thin metal has also an earth connection or connections.
The signaling-currents passing into the cable and into the accumulator, which is made to imitate the cable, neatralize each other as to their effect on the indicator at the trans-mitting-station.

The resistance of the thin metal used in the accumnlator is ascertained by experiment, and the condncting sheet of the accumulator is so proportioned as to make its resistance to the passage of a current the same as that of a given length of the real cable, while its surface is of such dimensions that, with the insulating niaterial employed, its capacity to receivea charge may also be the same as that of the same length of actual cable.

It is obrious that two or more of these accumulators may be coupled in continuous circuit, so as to obtain their combined effects in angmenting both resistance and capacity; or they may be coupled side by side or in maltiple circuit, so as to obtain their combined effects in angmenting capacity, while the resistance is decreased in the ratio of the number employed.

When the instrument is in use one end of the artificial line or balancing apparatus may be connected with the transmitter and the other to earth, while the sheets of tin-foil have a direct earth-counection. This is the arrangement I preter when the cable has a direct connection with the transmitter and with the re-ceiring-instrument; or if, as is now very usual. condensers are interposed at both ends between the cable and the instruments, we make similar arrangements in respect to the artificial or balaucing line. When the cable is worked on other systems the counections will be raried to suit the particular system in use, as will be well understood by electricians, the object being in - ll cases to assimilate as closely as possible the conditions under which the actual and the imitation cable are worked.

If I desire to make an artificial line or balancing apparatus to work with an existing telegraph-cable of which the resistance and capacity are known. I cau so construct one unit is to represent both in resistance and capacity a given length of cable, and then it is only
necessary to conple up these units in continuous circuit to correspond to the entire length of the cable; butin other cases it is convenient to make the units with comparatively high resistance as compared with the capacity, and then by arranging the units in parallel circuit a balancing arrangement or artificial line can be readily arranged corresponding approximately to any cable likely to be met with in practice, the resistance being dependent on the dimensions and arrangement of the plum. bago paper and the capacity or power of condensation or extent of surface of the tin-foil which faces it.
These instruments are not ouly aseful in duplex telegraphy, but also for other parposes, such as the experimental working of telegraphic transmitting and receiving instruments.
Haring thus described the nature of the said inrention and the manner of performing the same, I would have it anderstood that I claim-

1. The accumalator, having also power of conduction or artiticial line, as a new manufacture.
2. The combination of the accumulator, haring also power of conduction or artificial line, with an electric telegraph cable or line, for the prrpose of duplex working.
3. The construction of the accumulator, haring also power of conduction or artificial line, by combining the following parts: first, the condactiug strip or strips of metal foil by which the current passes through the instrument; second, the metal foil, haring an earth. connection, through which it charges and discharges itself; third, the separating-sheets of dielectric or insulating material.

London, 17 th Decenrb $\cdot \mathrm{r}$, 1 8i7.

J. MUIRHEAD, Jr.

Witnesses:

Chas. Berkiey Harris, W. Rimeil.

Both of No. 17 Gracechurch Street, London.

United States Patent Office.

GERRITT SMITH, OF ASTORIA, NEW YORK.

DUPLEX TELEGRAPH.

SPECIFICAIIdN forming part of Letters Patent No. 238,448, dated March 1, 1881.

To all whom it may concers:
Be it known that I, Gerritt Simth, a citizen of the United States, residing at Astoria, in the counts of Queens and State of New York,
5 hare invented certain new and useful Improvements in Duplex Telegraphs, of which the following is a specification.

My invention relates to certain improvements in the apparatus which has heretofore beeu emo plosed for the transmission of two independent sets of telegraphic signals simultaneonsl 5 from opposite ends of one and the same line-wire.

The general object of my in vention is to neutralize or present the production of the false 5 signal which rould otherrise be manifested upon the receiving-instrument situated at the transmitting, or, as it is technically termed, the "home," station by the so-called "static discharge," which consists in the sudden es30 cape to earth of a quantity of electricity stored up or accumalated upon the main live by induction laring the outward How of the electric current which constitates a telegraphic sigual.
My invention comprises the following sub25 livisions: first, the combination of a main line, a differential recciving-instrament, and tiro independent artificial lines, each permanently connected with the earth through the said receiring-instrument, oue of which lives 30 serves to compensate the dynamic and the other the static effects of the current transmitted from the home station, whereby the home receiving-instrument remains unaffected either by the dynamic or static action due to the trans-
35 mission of siguals from that station; second, in the combination of a batters, a main line, an artificial line, a differential receiving-instrument, and two inductive surfaces separated from each other by a dielectric, oue of said surfaces beo ing included in or connected with the main line and the other permanently with the earth through the rcceiving-instrument, whereby the inductive discharge from the main and artificial lines are caused to neutralize the effect of
45 eachother npon the home receiving-instrument; third, in the combination of a transmittingkey, a battery placed between said key and the earth, a maiu line exteuding from said key to the earth at the distant station, an artiticial
50 line extending from said key to the earth at the home station, and an auxiliary artificial
line, oneend of which is permanently connected to the earth at the home station, while the other end terminates in an indactive surface capable of receiving a charge from the main line, whereby the said artificial line is inductively charged from the main line and its charge, when set free, is conducted to the earth at the hone station; fourth, in the combination of the apparatus set forth in the third subdivision 60 hereof with an adjustable resistance interposed in the auxiliary artificial line at a point between the inductire surfaceand the earth, whereby the duration of the flow of the inductire discharge to the earth may be regulated or controlled; ifth, 65 in the combination of a main telegraph-line, an artificial line permanently connected with the earth and capable of receiving a charge by induction directly from said main line, and a differential electro-magnet haring one of its coils included in said artificial line, whereby the sinultaneous discharges of the main and artificial lines are caused to neutralize each others effect upon the armature of said electro-magnet; sixth, in the combination of an electromagnetic core, an armature, and three independeut coils capable of acting simultaneonsly thereon, which are included, respectively, in the circuit of a main line, an artificial line for compeusating the dynamic effects of the main-line 80 currents, and an auxiliary artificial linefor compensating the static effects of the main-line currents, whereby both the static and dynamic effects of the main-line curreut in oue coil of the electro-magnet are compensated by the simal- 8 taneous action of the static and dyuamic electric inflaence in the outer two coils; seventh, in the combination of a battery, a main line, an artificial line, two inductire surfaces separated from each other by a dielectric, one of 90 said surfaces being included in or connected with a main live and the other with the earth, aud suitable devices for disconnecting or rendering inactive any required portion of one of said inductive surfaces, whereby the quantity of electricity induced in the said artificial line by a given main-line current may be regulated aud controlled.
To the end that the uature of my invention may be more readily understood, I will first roc describe the constructiou and mode of operation of one of the ordinary and well-known sys-
\qquad
\qquad
\qquad

tems of telegraphy for the simaltaneous transmission of signals in opposite directions over the same line-wire, which are technically termed "daplex telegraphs," and will then ex-
5 plain the application of my improvements thereto.
In the accompanying drawings, Figure 1 is a diagram representing my improvements in connection with one of the ordinary forms of 10 daplex telegraphs. Fig. 2 shows its application to the same in a modified form. Figs. 3, 4, and 5 are detached views, illustrating certain details of the construction of my apparatus.
In the transmission of simultaneons signals
I5 in opposite directions apon the same line, there exist two essential conditions which must be complied with: First, the receiving.instrument at each station mast remain at all times in connection with the line, and, second, the car-
20 rents transmitted by the key at the home station mast not produce a signal apon the re-ceiving-instrument at the same station. The manner in which these conditions are fulilled in my improred apparatus will be hereinafter
In the drawings, Fig. 1 represents, in the form of a diagram, the apparatas at one terminal station of a duplex line; the other or distant station is precisely the same in its con30 straction and operation. M represents the electro-magnet of a receiving-instrament, having the usual soft-iron cores, $m m$, which, in the present instance, are supposed to be connected together by a yoke, and to act upon a movable 35 armature of soft iron in a manner well naderstood. K is a transmitting-key of the ordinary and well-known constraction. The front contact, 1 , of this key is connected to one pole (in this instance, the positive pole) of a main bat-
40 tery, E , the other pole thereof being connected to the groand at G. The rear contact, 3 , of the key K is connected directly to the ground at G, preferably inclading in the latter circuit a resistance, r, which should be approximately
45 equal to the arerage internal resistance of the battery E . From the lever of the key K two lines diverge, the first or main line L passing first aronnd the left-hand and then around the right-hand core of the electro-magnet M, thence 50 throagh the indnctor I, and thence to the ground at the distant station. The other branch, L^{\prime}, passes in the opposite direction, first around the right-hand and then around the left-hand core of the magnet M, and thence 55 throngh the rheostat or adjustable resistance R^{\prime} to the ground at G^{\prime} at the home station. It will be understood, therefore, that when the key K is depressed or brought into contact with the stop 1, the current from the battery
60 E passes through the key to the point 2, where it divides, one portion passing through the coils of the electro-magnet M, and thence through the indactor I and the line to the distant station, while the other portion passes
65 through another coil of the electro-magnet M in the opposite direction, and retarns directly
to the earth through the artificial line L^{\prime} and
the rheostat R. This latter branch of the circnit is technically termed the "artificial line," in order to distinguish it from the main line, which extends to the distant station. By adjusting the resistance at \mathbf{R} so that it is approximately the same as that of the main line, the carrent from the key will divide at the point 2 into two equal portions, which will produce equal and opposite electro-dsnamic effects upon the armature of the electro-magnet M, and the armature will therefore remain at rest notwithstanding that a carrent is passing orer the line L to the distant station. If, however, the distant station transmits a carrent at the same time, the strength of the curreut in the main line is angmented by the combined action of both terminal batteries, and its dr. namic effect overpowers that of the carreut 85 in the artificial line L^{\prime}. Consequently the armature of electro-magnet M is attracted and a signal is prodnced at the home statiou. Thas it will be understood that the receir. ing-instrument at the home station responds 9 only to carrents or signals coming from the distant station, and not to those transmitted by the key at the home station, and consequently the two stations can transmit siguals simultaneously to each other without interfer- 9 ence. The receiving-instrament at each station, although at all times traversed by the correut of the main line, responds only to the signals produced by the transmitting-ker at the other station.
Having thas explained the constraction aud mode of operation of an ordinary daplex-telegraph apparatus, I will next describe the natare of my improvement and the mode of its application thereto in the best manner now : known to me.
It is well known that an insulated telegraphic line-wire of considerable length, whether suspended above the earth or submerged beneath the water, is capable of accumalating or storing ap a quantity of electricits while connected with a source of electricity, such as a battery. This property of an insulated condactor is termed its "indactive" or "electro-static" capacity, and the electricity so : stored up and retained is called the "static" charge of the condactor. The electro-static capacity of the iusulated conductor is a quan. tity depending apon the extent of its supert. cial area, and upon the thickness of the uoncondacting space which separates it from the earth, or from other conductors in electric counection with the earth, which insulating. space is called the "dielectric." Thus, in the case of an ordinary telegraph-line suspended upou poles in the air, the earth and the sur. roanding objects connected therewith-such as buildings, trees, and the like-form the outer inductive surface, while the air constitates the insulating medium or dielectric surrounding the conductor. In the case of a submarine cable the insulating coating of gut. ta-percha constitutes the dielectric, and the iron armor of the cable or the surrounding115
$1: 0$125

by having a very wide working margin between the primary and secondary coils-that is to say, having a primary circuit of very low resistance and a secondary coil of compara-
5 tively very high resistance. For instanceas an example-I have used with great advantage a line-wire having a resistance of sisteen thousand ohms, primary coils with a resistance varying from two-tenths of an ohm to one ohm,
to and secondary coils with resistances rarying from twelve thousand to four thousand ohms.

An ordinary Morse key may be used to make and break the primary circuit. When contact is made the circuit is closed from the bat-
15 tery through the primary coil.
The sounder shown. although resembling an ordinary magneto-telephone in appearance, differs essentially from it in the fact that it is not necessarily a reproducer of sound-that is,
20 a silent electric signal at the transmitting-station will prodnce sound at the receiving-station. The induced current of electricity of very high tension coming from the secondary wire of the induction-coil at the transmitting-
25 station is conveyed to the secondary wire of the induction-coil at the receiving-station, and there induced inversely through such secondary wire into the primary wire of said induc-tion-coil. (which primary wire or circuit is
30 of very low resistance,) and passing through the helix of the sounder, which is in circuit with said primary wire, causes a metal dial or plate, e, in the receiving-instrument to ribrate, and thus give an andible sound. This
35 plate coustitutes a sounder, and may be greatly varied in thickness and tension. I prefer to use a diaphragin or plate, as it can be thrown into ribration with rery small expen.diture of electro-motive force.

In order to obtain the best results the helix of the sounder should have a very low resist-ance-equal to that of the primary wire of the receiving induction-coil.
The operation of an apparatus organized as 45 above described is as follows: The closing of the transmitting-key forms a closed circuit from one pole of the battery to the other pole through the primary wire of the trausmitting induction-coil, thereby inducing a current in
50 the secondary wire of the transmitting induc-tion-coil, the line-wire, and the secondary wire of the receiving induction-coil. Wheu the curcuit is broken, by opening the key a reverse current of high intensity is induced in 55 the secondary wire of the transmitting induc-tion-coil and in the line-wire. The secondary wire of the receiving induction-coil being included in the main line, is correspondingly affected, and acts inductively and in-
60 versely on the primary wire of said inductioncoil, and as the key of the primary circuit at that station is open and the switch closed the interruptions of the current at the transmit-ting-station are audibly produced as intelligi-
65 ble signals on the sounder, as is well understood.

Under the organization shown it will be ob-
served that the primary circuit is made and broken by the key when-transmitting, thus throwing the battery into and out of circuit, while at the receiving-station the key is open and both the battery and key are short-circuited or cut out, and the battery is again thrown in br closing the key.

Any number of intermediate stations may be employed, the line being continuously connected at each of such stations with the second. ary wire of the induction-coil, and br an arrangment of apparatus similar to that shown and described at the terminal station messages may be sent to and taken from the primary wires of the induction-coils at any or all ot. such intermediate stations.
I have found by practical tests that with the abore-described apparatus electric signals made at a transmitting-station may be made to produce audible sounds at a receiving-sta tion so distant that the resistance of the linewire is equal to about four thousand miles.
I claim as of my own invention-

1. The hereinbefore-describedimprovement in the art of producing intelligible signals at a distance in an electric circuit, which improvement consists in causing signals to be made by makes and breaks of the electric current in the primary wire of an induction coil at the transmitting-station, (which primary wire or circuit is of very low resistance and constitutes a metallic circuit,) thereby inducing corresponding currents, but of very high tension, in the secondary wire of said inductioncoil in the line-wire, and in the secondary wire of a corresponding induction coil of high resistance at the receiving-station, the currents of which wire act inversely by induction upon the primary wire of the receiving inductioncoil, (which primary wire is of very low resistance,) and the helix, also of low resistance, actuating a diaphragm or plate-sounder, included in said primary wire, which constitutes a metallic circuit.
2. The combination, substantially as herein set forth, of the primary wire of an induction coil constituting a metallic circuit of very low resistance, the battery, the key, and the helir. (actuating the diaphragm or plate-sounder.) included in a branch of said primary circuit. whereby the key and battery are both cut out of circuit by opening the key.
3. The combination, substantially as herein set forth, of the battery and the key in the primary wire of an induction-coil at the trans-mitting-station, (said primary wire constituting a circuit of very low resistance,) the secondary wire of said induction-coil, the secondary wire of the receiving induction-coil, (both secondary coils being of very high resistance,) the line-wire connecting said secondary wires, and the helix, actuating the diaphragm or plate-sounder, included in a branch of the primary wire of the receiving induction-coil, constituting a metallic circuit of very low resistance, whereby the key and battery are both cut out of circuit by opening the ker.
```75
```so


\(\qquad\)55
```95
```100105II115
20

120教 125

(Mo Model.)
0. LJGO.

Electric Telegraphs.
No. 235,161.
Patented Dec. 7, 1880.

By his Attorney:
Souldaim. Heppbin of Peyphe
G. SMITH. Duplex Telegraph.
No. 238,448.
Patented March 1, 1881.

Serritt: Smith,

\section*{0. LUGO.}

Dynamo Electric and Inductive Telegraphy. No. 235,690.

Patented Dec. 21, 1880.

Skation \(Y\).
 H\%N\%:sses Ground Lm a eftince
L. Etight.

Station Z.

water, as the case may be, the onter inductive sarface. The thickness of the dielectric being necessarily rery much less in a submarinecable than in an air line, the indnctive surfaces are 5 brought nearer together. Hence the electrostatic capacity of a sabmarine line i.a many times greater than that of an air line of equal length. It will appear, therefore, from the bere-inbefore-mentioned consilerations, that when a
10 long line of telegraph is connected with the battery by depressing the key at the sending. station-as for the purpose of transuitting a signal-the line will acquire a considerable static charre. At the completion of the sig-
\(I_{5}\) nal, when the key is raised, the line is first disconnected from the battery and immediatels afterward connected directly to the earth at the home station, whereupon the accumulated induced electricity stored ap in the liue will sudof the electro-magnet \(M\) of the houne receiv-ing-instrument, and producing what is termer the "static discharge." As the rheostat \(R\) and the short artificial line in which it is placed
25 hare practicalls no electro-static capacity, there will be no corresponding discharge from the artificial line \(L^{\prime}\) through the opposing wire of the electro-magnet J. and consequently an extra or false signal of short duration will be static discharge of the main line in the elec-tro-magnet. I have discorered that this effect of the static discbarge from the line upon the home instrument may be compensated or neu-
35 tralized by making use of an inductor in connection with the main line, the receiving-instrument, and the earth, in a manner which I will now proceed to describe.

Referring to Figs. 4 and \(\overline{2}, P\) and \(P^{\prime}\) are two 40 broad thin strips of metal, which are conductors of electricity. Betrieen them is placed a dielectric, \(D\), of similar form, composed of some insulating material-such, for example, as linen paper saturated with paraffine.

Such an apparatas is analogous in its construction to a Leyden jar, in which \(P\) represents the inner metallic coating, \(D\) the noncouducting material of the jar, and \(P^{\prime}\) the outer metallic coating, which is connected with lic coating corresponding to the plate \(P\) be charged with positire electricity from any source, it will induce an equal charge of negatire electricity in the coating corresponding
55 to the plate \(\mathrm{P}^{\prime}\), connected with the earth, and that when the jar is thus charged, if the plate \(P\) be disconnecterl from the source of electricity and connected directly to the earth, a double discharge takes place, the positive electricity
60 from \(P\) and the negative electricity froun \(P^{\prime}\) thow. ing simultaneously to earth and there neutralizing each other. I avail myself of this principle for the purpose of neutralizing the static discharge from the line which produces the
65 anl the seceivinginstrament of a duplex teleyraph. To this end I place between the howe relay and the line-wire leading to
the distant station an inductor, \(I\), which consists, essentially, of two strips of tin-foil or other suitable metal. \(\mathrm{P}^{\prime}\), separated by a strip of dielectric, \(D\), of the same breadth, and preferably inclosed by two additional strips of insulating material, \(D^{\prime}\) and \(D^{\prime \prime}\), arranged as showu in Figs. 4 and \(\overline{0}\). This apparatus may be constracted of any required length, and is preferably folded up, so as to occany as little space as possible, thus constituting the inductor I of Figs. 1, \(\ddot{2}\), and 3. One of the metallic strips, \(P\), is incladed in the circnit of the line-wire \(L\); the other strip, \(P^{\prime}\), is connected to the earth at 8 the home station by means of a wire, l, which may be termed the "anxiliary artificial line." This wire passes, by an independent belix, around both cores of the electro-magnet \(M\) in the same direction as the main line \(L\). When 8 a signal is transmitted orer the line \(L\) from the positire pole of the battery E, an electrostatic cbarge is stored up in the plate \(P^{\prime}\) of the inductor \(I\), which is equal in quautity but opposite in polarity to that of the corresponding portion of the main line. When the key K is raised and the main line is connected with the earth at the point 3, the charge of the main line escapes to earth through the wire \(L\), and at the same time the opposite charge in the inductor \(I\) is also set free and escapes to earth by the wire \(l\). As these two wires both pass in the same direction around the coils of the magnet \(M\), and as the polarities of the two discharges are uulike, they compensate each other's effect upon the cores of the receiv-ing-instrument, and uo false signal is produced.
It is evident that as the inductire surface connected with the anxiliary artiticial line \(l\) does not extend the ribole length of the main line \(L\), the electro-static capacity of the latter, and consequently the quantity of electricity discharged, will be greater than that of the artificial line. Fhis inequality may be compensated by a proper aljustment of the relative 1 ro resistance of the rheostats \(r r^{\prime}\). I prefer, howerer, in many cases to make use of the modification of the apparatus rhich is shown in Fig. 2. In this case the aaxiliary artificial line \(l\) is arranged in the same manner as hereinbe- in fore described, with the exception that it passes through an independent electro-magnet, \(\mathrm{M}^{\prime}\), Which is arranged, as shown in the tigure, so as to exert an attraction in the opposite direction upon the armature \(a\) of the electro-magnet 120 M. In this case the comparative reakness of the artificial discharge unay be readily compensated by adjusting the screv \(m^{\prime}\) so that the auxiliary electro-inagnet \({ }^{\prime}\) ' mas be nearer to the armature \(a\) than the main magnet \(M .125\) The rheostat \(r\) is emplosed in this instance principally for the purpose of regulating the duration of the discharge.

I hare shown in Fig. 3 a device for regulating the quantity of electricity which the in- 130 ductor is capable of storing up. I effect this by dividing the plate \(P^{\prime}\) into any required namber of detached sections, which are connected together by means of peg.commutators
```

$\square$

```55
號110115

\title{
Unillantillan
}

GERRITT SMITH, OF ASTORIA, NEW YORK.

\author{
DUPLEX TELEGRAPH.
}

SPECIEICATION forming part of Letters Patent No. 238,448, dated March 1, 1881.
Application filed December 14, 1880. (No modal.)

To all whom it may concern:
Be it Enown that I, Gerritt Sirtie, a citizen of the United States, residing at Astoria, in the county of Queens and State of New York,
5 hare invented certain new and nseful Improrements in Duplex Telegraphs, of which the following is a specification.

Myinvention relates to certain inprovements in the apparatus which has heretofore been emsets of telegraphic signals simultaneously from opposite ends of one and the same line-wire.

The general object of my invention is to neutralize or prevent the production of the false 15 signal which roald otherwise be manifested upon the receiving-instrument situated at the transmitting, or, as it is technically termed, the "home," station by the so-called "static discharge, " which consists in the sudden esap or accumalated upon the main line by induction daring the outward How of the electric carrent which constitutes a telegraphic signal.

My invention comprises the following subline, a differeutial recciring-instrument, and two independent artiticial lines, each pernianently connected with the earth through the said receiring-instrument, one of which lines serves to compensate the dynamic and the other the static effects of the current transunitted from the home station, whereby the home receiving-iustrument remains unaffected either by the dynamic or static action due to the transmission of signals from that station; second, in the combination of a battery, a main line, an artificial line, a differential receiving-instrument, and two inductive surfaces separated from each other by a dielectric, one of said surfaces being included in or connected with the main line and the other permanentls with the earth through the receiving-instrument, whereby the inductive discharge from the main and artificial lines are caused to neatralize the effect of third, in thon key, a battery placed between said key and the earth, a maiu line extending from said key to the earth at the distant station, an artiticial 50 line extending from said key to the earth at the home station, and an anxiliary artificial
\(\qquad\)
line, one end of which is permanently connected to the earth at the home station, while the other end terminates in an indactive surface capable of receiving a charge from the main line, Whereb the said artificial line is inductively charged from the main line and its charge, when set free, is conducted to the earth at the home station; fourth, in the combination of the apparatns set forth in the third sabdivision 6 hereof with an adjustable resistance interposed in the auxiliary artificial line at a point between the inductive surfaceand the earth, whereby the daration of the flow of the inductiredischarge to the earth may be regulated or controlled; fifth, 65 in the combination of a main telegraph-line, an artificial line permanently connected with the earth and capable of receiving a charge by indaction directly from said main line, and a differential electro-magnet haring one of its coils included in said artificial line, whereby the simultaueous discharges of the main and artificial lines are caused to neutralize each other's effect-upon the armature of said electro-mag. net; sixth, in the combination of an electromagnetic core, an armatare, and three independent coils capable of acting simultaneonsly thereon, which are included, respectively, in the circuit of a main line, an artificial line for compensating the dynamic effects of the main-line 8 currents, and an auxiliary artificial line for compensating the static effects of the main-line currents, whereby both the static and dynamic effects of the main-line current in oue coil of the electro-magnet are compensated by the simul- 8 taneous action of the static and dyuamic electric influence in the outer two coils; serenth, in the combination of a batters, a main line, an artificial line, two indnctive surfaces separated from each other by a dielectric, one of said surfaces being included in or connected with a main line and the other with the earth, aud suitable devices for disconnecting or rendering inactive any required portion of oue of said inductive surfaces, whereby the quantity of electricity induced in the said artificial line by a given main-line current may be regalated aud controlled.
To the end that the nature of my invention may be more readily understood, I will first sec describe the constractiou and mode of operation of one of the ordinary and well-known sys-
tems of telegraphy for the simultaneons transmission of signals in opposite directions over the same line-wire, which are technically termed "daplex telegraphs," and will then ex5 plain the application of my improvements thereto.
In the accompanying drawings, Figure 1 is a diagram representing my improvements in connection with oue of the ordinary forms of
10 duplex telegraphs. Fig. 2 shows its application to the same in a modified form. Figs. 3, 4, and 5 are detached views, illustrating certain details of the construction of my apparatus.
In the transmission of simultaneons signals existo dist two essential conditions which mast bor complied with: First, the receiving-instrument at each station mast remain at all times in connection with the line, and, second, the cartion mast not prodnce a signal apon the re-ceiving-instrument at the same station. The manner in which these conditions are fulfilled in my improved apparatus will be hereinafter 25 explained.

In the drawings, Fig. 1 represents, in the form of a diagram, the apparatus at one terminal station of a duplex line; the other or distant statiou is precisely the same in its con-electro-magnet of a receiving-instrument, having the usual soft-iron cores, \(m m\), which, in the present instance, are supposed to be connected together by a yoke, and to act upon a morable 35 armature of soft iron in a manner well understood. K is a transmitting-key of the ordinary and well-known constraction. The front contact, 1 , of this kes is connected to one pole (in this instance, the positive pole) of a main bat-
40 tery, E , the other pole thereof being connected to the ground at \(G\). The rear contact, 3 , of the key \(K\) is connected directly to the ground at \(G\), preferably inclading in the latter circuit a resistance, \(r\), which shoald be approximately
45 equal to the arerage internal resistauce of the battery \(E\). From the lever of the key \(K\) two lines direrge, the first or main line \(L\) passing first aroand the left-hand and then around the right-haud core of the electro-magnet \(M\), thence
50 throagh the inductor I, and thence to the ground at the distant station. The other branch, L , passes in the opposite direction, first around the right-hand and then aronnd the left-Land core of the magnet Mr, and thence
55 through the rheostat or adjastable resistance R 'to the ground at \(\mathrm{G}^{\prime}\) at the home station. It will be understood, therefore, that when the key \(K\) is depressed or brought into contact with the stop 1, the carrent from the battery
60 E passes through the key to the point 2 , where it divides, one portion passing through the coils of the electro-magnet \(M\), and thence through the inductor I and the line to the distant station, while the other portion passes
65 through another coil of the electro-magnet \(M\) in the opposite direction, and returns directly to the earth through the artificial line \(L^{\prime}\) and
the rheostat R . This latter branch of the circuit is technically termed the "artificial line," in order to distinguish it from the main line, which extends to the distant station. By adjusting the resistance at R so that it is approximately the same as that of the main line, the carrent from the key will divide at the point 2 into two equal portions, which will produce equal and oppositeelectro-dsnamic effects upon the armature of the electro-magnet \(M\), and the armatare will therefore remain at rest notwithstanding that a carrent is passing over the line \(I\) to the distant station. If, however, the distant station transmits a carrent at the same time, the strength of the carrent in the main line is angmented by the combined action of both terminal batteries, and its ds. namic effect overpowers that of the carrent 85 in the artificial line L'. Consequently the armature of electro-magnet \(M\) is attracted and a signal is produced at the home station. Thus it will be understood that the receiv. ing-instrument at the home station responds only to carrents or signals coming from the distant station, and not to those transmitted by the key at the home station, and consequently the two stations can transmit signals simaltaneously to each other withoat interfereuce. The receiving-instrument at each station, althongh at all times traversed by the carrent of the main line, responds only to the signals prodaced by the transmitting-key at the other station.
Having thas explained the constraction and mode of operation of an ordinary daplex-telegraph apparatus, I will next describe the nature of my improvement and the mode of its application thereto in the best manner now 105 known to me.
It is well known that an insulated telegraphic line-wire of considerable leugth, whether saspended above the earth or submerged beneath the water, is capable of accumalating or storing up a quantity of electricity while connected with a source of electricity, such as a battery. This property of an insulated condactor is termed its "inductive" or "electro-static" capacity, and the electricity so stored up and retained is called the "static" charge of the conductor. The electro-static capacity of the insulated conductor is a quantity depending upon the extent of its sapertcial area, and upou the thickness of the noncondactiug space which separates it from the earth, or from other condnctors in electric counection with the earth, which insulatingspace is called the "dielectric." Thas, in the case of an ordinary telegraph-line saspended upon poles in the air, the earth and the surrounding objects connected therewith-such as buildings, trees, and the like-form the outer indactive surface, while the air constitates the insulating mediam or dielectric surrounding the conductor. In the case of a submarine cable the insulating coating of gat-ta-percha constitutes the dielectric, and the iron armor of the cable or the surrounding

No. 291,096.

Patented Jan. 1, 1884.

Fig.1.

Rheo

WITNESSES
med Ahthages
abbisi co. Remberd

\section*{0. LUGO.}

Eleotrio Telegraphs.
No. 235,159.
Patented Dec. 7, 1880.

L.NPEVTOA

Orazio Lugo.
By גis Attorneys
Boldयin, Hophimot Reyfor

\title{
United States Patent Office.
}

\author{
mERHERT A. TAYLOR, OF CORNHILL, LONDON,AND ALEAMNDER MUIRHEAD, OF 159 Cander road, middiesex colinty, engiandy.
}

IMPROVEMENT IN TELEGRAPHIC ACCUMULATORS AND CONDENSERS.

\author{
Sprecilication forming part of Letters Patent No. 206,366, dated July 23, 18f: ; application filed May 15, 1878; patented in England, February 24, 1875.
}

To all achom it may concern:
be it known that we, Herbert aryatd taylor, of 7 Pope's Head Alley, Cornhill, in the city of London, and ALEXander Mirrmead, of 109 Camden Roal, in the county of Middleser, Eugland, hare iurented new and uscful Improrements in Electric Telegraphs and in apparatus connected theremith, which improrements are fully set forth in the following specification.
This invention has for its object to construct an accumulator having also porver of condaction, rhich is adjasted to the requirements as in Muirhead's English Patent No. 3,1603, of October \({ }^{2} 3,1874\), upou which this is an improrement. The sulbject-matter clained is hereinafter stated.

With paper-pulp is pixed a substance, such as black lead (plumbago) or precipitated metals, gold, silrer, copper, or other good conlucting substance, by which a moderate conducting porer is imparted to the paper produced from the pulp, or by chemical processes conducting materials may be precipitated in the borls of the paper. The paper so prepared is arranged between alternate lajers of a dielectric, Thich may consist of paper treated with parattine wax or sliellae, of gntta-percha or mica. In accumulators thins prepared the conducting-paper takes the place, partly or in whole, of the metallic sheets (tin-foil or lead) hitherto generally employed.
To form the imitation telegraph-line this con-ducting-paper, insulated, as in the condenser, by sheets of a dielectric material, is so arranged by connecting a number of the sheets, cither in continuons or parallel circnit, that the electrical properties of the telegraph line or cable are initated, so that uniformly throughout the imitation line the conductive resistance bears the same ratio to the electrostatic capacity as the resistance (either total or per unit of length) of the telegraph line or cable bears to its electrostatic capacity.
Paper made as above described may be used in constructing standards of high resistance.
We obtain a paper which contains intimatcly intermixed with the pulp a condacting-porsder. Plumbago we prefer. The paper we hare used, and which works well, contains about tifty per cent. of plambago. It is of the sub-
stauce of stout blotting-paper, and we obtain it in sheets about eleven by eighteen inches; but other sizes, of course, may be obtained if required. The plumbago is mised with the paper-pulp in the same way as other porders have sometimes been introduced, with a view to give substance to the paper. When this paper is to be used in conjunction with paraffine paper, we apply, in order to render it less porous, a reak solution of shellac in alcohol, either by dipping or brushing; bat this is unnecessary when shellacked paper is used for the insalator. We also obtain sheets of a suitable dielectric. Paper saturatel with par. affine wax we employ by preference. We also obtain sheets of a material which is a gool conductor of electricity. We employtin-foil by preference. We place theso sheets the one on the other in the following order: Paraffine paper, tin-foil, paraffine paper, plumbago paper, paraffine paper, tin-foil, paraffine paper, plumbago paper, and so on until we have accumulated as many sheets as we think desira-ble-sar, for example, we use trienty sheets of plambago paper. The pile will then consist of eighty-tirree sheets in all. The shects of plambago paper are (if we intend the conduction to be along the length of the paper) made longer than the paraffiue sheets-say, by an inch and a half, or thereabout-so that one sheet of plombago paper comes into contact with another sheet of the savie material at the margin all along each end; and to hold the sheets tightly together along these margins we pass copper rivets through them. The sheets of paraffine paper are somewhat mider than the plambago paper, so that they effectually prevent the sheets of plambago paper coming into contact the one with the other, escept at the margins, as already stated. The sheets of tin-foil are sinaller than the sheets of paraffine paper, so as to insure that they shall be kept out of contact with the plumbago paper; but the sheets of tin-foil or tongues projecting from them are allorred to come into contact one with the other at one or both sides remote from the projecting margins of the plumbago paper.

It is adrisable to put the sheets together when the paraffine is hot, and to press them between lot plates of metal from time to time

Fig. 1, is represented as exposed to inductive disturbances between the points \(c\) and \(d\), and also between \(b\) and \(e\), and to aroid the effects of sach distarbance the circuit is wholly me-
5 tallic, consisting of two wires between these points. In the plans previously adopted it would be necessary that the circuit between \(a\) and \(c\) should also be metallic, as shown bs the dotted line, or else that it should be metallic all the way from \(b\) to \(c\), in either case passing over space not exposed to distarbance, although by grounding the terminals of one of the wires of the metallic circuit, as shown at \(d\) and \(e\), a single wire is sufficient between

Supposing it were attempted to owit the second wire, 3 , between \(a\) and \(c\), and the wire 2 were counected with the earth-plate \(g\) at \(a\), and then connected with the end of one of the 20 wires, as 4, between \(c\) and \(d\), the said wire 4 being connected at \(d\) rith the wire 5 , passing to \(b\), and there connected with the return-wire 6 , extending from \(b\) to \(e\) and grounded at \(e\), the electric currents and impulses would pass from 25 a over wires 2, 4,5, and 6, through \(b\) to the ground \(g\) at \(e\), and thence to the ground at \(a\), and it would not pass orer the return-wire 7 between \(c\) and \(d\) even if it were gronnded at \(c\) as well as at \(d\), so that this portion of the line 30 would still be subject to distarbance. If, however, an induction-coil, \(i\), having its helices properly proportioned relatively to the circuits of which they are to form a part, be placed at \(c\), and the circuit-wire 2 be gronnded 35 at \(a\) and \(c\), after passing through one of its helices, and the closed metallic circuit 47 pass through the other, then every impuise passing through the circuit a 2 c will induce in the circait 47 an impulse which will be felt at \(d\).
40 If, now, I place another induction-coil, as \(i^{\prime}\), at \(d\), inclade one of its helices in the closed circuit 47, and the other in the earth-circuit d5b6 grounded at e, then every impulseor rariation felt in the earth-circuit \(a \dot{2} c\) will in-
45 dace corresponding carrents in the metallic circait 4 7, which will, in turn, induce in the earth-circuit d5bce impulses which will be felt at \(b\), and I shall be put to the expense of a metallic circuit only where needed.
It is obrious that the second induction-coil, \(i^{\prime}\), will not be necessary, as both metallic portions \(c \bar{d}\) and \(e b\) of the circuit may be included in a single grounded circuit; but when there are more than tivo regions of distarbance, or
55 if there are two and neither of them is adjacent to the end of the line, the induction-coils will have to be properly arranged to separate the grounded circuits from each other, as will be readily understood. This arrangement may
60 be used where a number of lines are to pass through one cable in a part of their course and diverge at each end thereof, and it is also obvious that a very valuable application of this system will be to connect, by doable wire or
\(\sigma_{5}\) metallic circuit trunk-lines, two telephone-exchange offices, and at the same time allow
these trank-lines to be used by subscribers to each exchange whose instruments are connected with it by grounded circaits. Fig. 2 shows such an arrangement, and also shows a methud by which a third office or set of lines can be conuected with the system at an intermediate point in the metallic circuit.

The central offices \(x y z\), each containing the terminals of sereral of the usual grounded sub. scribers' circaits 1011202130 , \&c., are connected together by one or more trank-lines, each consisting of two wires, 89 , both incladed in the circuit, it being sapposed that there are other circuits which woald distarb, so by their inductive effect, the said trunk-line if single lines were used with the ground as the return circuit in the usual manner.

When it is desired to place a subscriber ou one of the circaits, as 12, centering in office \(x, 8\) with a sabscriber on one of the circuits, as 21 , centering at \(y\), the end of the said circuit 12 at the office 2 may be directly connected to one of the wires, as S , of the trank-line, the other wire, 9 , of said trunk-line being connected \(9^{\circ}\) to the ground \(g\) at station \(x\), as indicated by the dotted lipes. If the ends of the wires 39 are conuected at office \(y\), a complete circuit will be formed throngh the said circuit 12 and the wire 8 , and back through the wire 9 , aud 95 thence by the groand between the office \(x\) and the sabscriber's station in question on circuit 12. By placing instraments in the said circait at office \(y\) commanication would be established between said office and the subscriber's station, and the effects of induction over the portion of the line between offices \(z\) and \(y\) exposed to such effects would be neutralized, as before described.

If the sabscriber's circuit 21 were connected with the wire 8 of the trank-line, it will be seen that the wire 9 will be cat out of the circuit, whether it be grounded or not, at office \(y\), the said circait now passing from the sabscriber's station on circuit 12 over said circuit and wire 8 and circait 21 to the sabscriber's station, retarning directls by the ground, and thus throwing out the wire 9 and rendering the circait liable to cause or receire distarbances from induction.
To establish commanication in accordance with my invention and include both the rires 89 in the circuit, I connect them at office \(y\) with the electrodes of one helix of the induc tion-coil \(i^{2}\), the other helix whereof is cond nected at one end with the circuit 21 and \({ }^{\text {at }}\) the other end with the ground. When con nected in this manner the electric impulses in the circuit 12 and trunk-line and helix of the coil \(i^{2}\) in circait therewith induce similar imb pulses in the other helix of the induction coil \(i^{2}\) and the grounded circut 21 , in connectioa therewith, and similarly the carrents are trant mitted from circait 21 by indaction to trunk-line 89 and connected circuit 12. desired, induction-coils \(z^{2}\) might be placed \(\$\) both ends \(x y\) of the trunk-line 89 , and the eleos

 75 So

\(\qquad\) \(\infty\)

\(\square\)

\(\square\)
0

\title{
1
}

\author{
CHARLES SELDEN, OF.ST. LOUIS, MISSOURI.
}

STATIC NEUTRALIZER FOR TELEGRAPHS.

SPECIFICATION forming part of Letters Patent No. 291,096, dated January 1, 1884.

To all whom it may concern:
Beit knónithat I, Charles Selden, a citizen of the United States, and a resident of St. Louis, in the county of St. Louis and State of 5 Missouri, hare invented certain new and asefal Improvements in Telegraphs, of which the following is a specification.

The object of my inveution is to neutralize the disturbing effects of the static dischargeto current from a telegraph-line, which occurs simultaneously with the removal of main battery from line and the patting of the line to earth, and which is productive of false signals on the receiving-instrument at the transmitting
15 end of the line.
My invention is designed more particularly for application to duplex or multiplex telegraphs, and Ihave in the accompanying drawings illustrated one method of applying the
20 same to a duplex telegraph. I do not, however, limit myself to such application of the invention.

My invention consists, broadly, in employing the static discharge-current as a means of
25 neutralizing the effects of said current upon the receiving-instrument, to effect which I cause the whole or a portion of the static dis-charge-current to momentarily flow through a circuit containing an electro-magnet or other
30 electro-responsive device, which, by suitable means, will either magnetically or mechanically oppose and neutralize the effects of said static discharge-current acting in the coils of the relay.

My invention consists, likewise, in the combination, with coils or helices which act either magnetically or mechanically to neutralize the effects of the static discharge upon the homerelay, of means for momentarily connecting
40 said coils with the main line simultaneously with the withdrawal of the main-line battery, so that the static discharge-current (all or a portion) will flow momentarily through said coils.
My invention consists also of certain combinations specified in detail in the claims.

In the accompanying drawings, Figure 1 is a diagram of circuits and apparatus illustrating one method that may be used for carrying
50 my invention into practice. Fig. 2 illustrates a modified plan. Figs. 3 and 4 show a device that may be used for closing the circuit to the
neatralizing - coils momentarily upon morement of the transmitter in one direction only.

In Fig. 1, R indicates a differentially-wound relay electro-magnet, of the usnal construction for a duplex telegraph, one of whose coils is in the line-circuit, while the other is in a split. or branch circait to earth containing an artificial resistance Rheo. Said relay is connected, as ordinarily, with the insulated spring of the transmitter-lever A, which spring normally rests against a hook on the end of the lever, thus completing the normal connection between line and earth through the transmitter. 65 The resistance asually emplosed in the earthconnection and adjusted to equal resistance of main-line battery is omitted for the sake of simplicity.
The contact-stop, with which the spring 70 makes connection when the transmitter is operated, is indicated at \(n\), while M B is the main-line battery connected mith said stop, so as to be placed to line by the operation of the transmitter.
\(T\) indicates the usual stops for the transmit-ter-lever \(A\), and \(F, H\), and \(G_{2}\) respectively, the electro-magnet, local battery, and key by which the transmitter is controlled.
\(S\) is the sounder in a local circuit controlled 80 by the relay.

E indicates the armature of the relay, which armature is arranged in the present case to be subjected to the polarizing influence of an electro-magnet coil, D , and is fur that purpose 85 mounted directly on the core of the coil D , as shown, or may form the core itself, being suitably pivoted to act as an armature. The armature is of soft iron, and in the normal condition of the device is not polarized by the coil \(D\), and is therefore free to be attracted by the core of the relay. When, however, the static discharge-current flows in the coils of the relay, the armature is simultaneously polarized by the coils \(D\), but in such a way as to tend to neutralize the inductire effects of the core of the relay, and to thus render the armature incapable of attraction by the relay. This device is described and claimed in anoth: er application for patent filed by me, and I too therefore herein make no claim to it. It is shown here merely for the purpose of illustrating one of the methods that may be em. ployed for atilizing the static discharge-cur-
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\square\)

\footnotetext{

}

 ATHERFORCE
rent, which latter is allowed to flow in the coils \(D\) in the manner to be now described, or in any other suitable manner. The coils \(D\) are included in a branch wire to earth connected
5 to the main-line circuit, and indicated by the numeral 9, which branch wire includes a rheostat Rheo' for the purpose of determining the amount of current that shall flow in said branch, and is closed at the proper time by Io the action of lever B , carrying contact-spring \(m\), and, playing between stops at \(\mathrm{T}^{2}\), spring \(m\) makes contact with screw \(c\); when the lever \(B\) is turned on its fulcrum, thas completing circuit 9. At the end of lever \(B\) is pivoted a
is piece, B', having a shoulder or step, which abuts against the end of lever B. A spring, - \(f^{\prime}\), tends to hold the piece \(B^{\prime}\) in the position shown, and if said piece be moved downward the lever B moves with it and closes circuit 9.
2c. The shoulder is, however, so formed as to allow the piece \(\mathrm{B}^{\prime}\) to swing upward freely without interference \(\pi\) ith or from the lever \(B\).
Cpon the end of transmitter \(A\) is an adjustable stud or pin, \(P\), which rides under the 25 end of \(B^{\prime}\) and lifts it when the transmitter is operated to put the main battery to line, but finally slips by the end of \(B^{\prime}\), allowing the same to resume its normal position shown. This movement of the transmitter does not produce any effect on lever B or circait 9. When the transmitter returns to its normal position, howerer, the stud \(P\) eugages with the other side of \(B^{\prime}\), thus carrying lever \(B\) with it and closing circuit 9 . This closing of made to take place simaltaneously with the removal of the main-line battery \(¥ B\) from line and the connection of the line to earth. Just before reaching its position of rest the
40 stad \(P\) slips by the end of \(B^{\prime}\), and the parts resume their normal position. The devices just described for closing circuit 9 are described and claimed in another application for patent filed by me. Other means might be 45 used in their place for momentarily closing the circuit 9 at the proper time.

The general operation is as follows: In the normal position of the parts the armatare \(E\) can be attracted, there being no current in
50 coils \(D\), and said armature is therefore free to respond to signaling-currents from the distant station, and the sounder \(S\) is operated. The transmitter-lever being at rest and battery M B disconnected, the circuit from line
55 to coils D is broken at \(m c\). When the transmitter is operated so as to put the main battery to line, the circuit 9 still remains open for the reason already explained, and the current from the main battery flows in the ordinary
60 way, dividing between the two coils of the relay R, so as to produce no effect on the armature. When the transmitter returns to its normal position, the circuit 9 is closed for an instant simaltaneously with the flow of the
65 static discharge-current in the relay-coils, and the armature remains at rest. The time dur-
ing which circuit 9 is closed is, however, so short that there is no interference with signals from the distant station. The rheostat Rheo' enables the operator to adjust the strength of the neutralizing effects produced by the static discharge-current in the neutralizing-coil \(D\) or other device. To adjust the duration of the carrent in coil D, I propose to employ a device consisting of a piece of soft iron, \(h\), monnted on and in magnetic connection with an extension, \(k\), from one pole of the core of \(D\), and adjustable to and from the opposite pole, so as to close, more or less, the magnetic circuit. and thus vary, in a well-known way, the facility with which the core, having been momentarily charged with magnetism, will lose its magnetic charge.
In Fig. 2 the armature-lever of the relay carries the usual armature or armatures, and is 85 arranged in such a way that the core of \(D\) and the core of the relay \(R\) will act in mechanical rather than in magnetic opposition to one another. If separate armatures be employed for the cores of \(D\) and \(R\), and said armatures are not in inductive proximity, the opposition will be purely mechanical. If, however, the cores are placed on opposite sides of the same armature, the element of magnetic induction will be present also to a greater or less degree. The lever \(E\) is in the present case supposed to be of the ordinary material-such as brass, carrying an iron armature or armatures. The general operation is substantially the same as with the arrangement of Fig. 1, with the exception that the core of \(D\) pulls mechanically against the core of \(R\) at the instant of the flow of static discharge-current in the coils of the relay. To adjust the duration of the pall of D so that it shall correspond somewhat to the time during which the effects of the static discharge-current are felt in the relay; but so that, nevertheless, it shall not be necessary to keep the circnit 9 closed during the whole of that time, I may employ suç a device as has been already described in connection with Fig. 1, or an equivalent device, consisting of a piece, \(d\), of iron, adjustable to and from the ends of the core of \(D\), so as to act like the armature of a horseshoe-magnet in bridging the poles and completing, to a greater or less extent, the magnetic circuit.

Instead of lever B and its attachments I may use the device shown in Figs. 3 and 4, in side and rear vier. In these figures, 5 indicates a block of some insulating material, carrying on one face a piece of conducting material, 7 , which forms one side of a break in the circuit 9 , while 6 is an insulated con-tact-spring carried by transmitter A and forming the other side of said break. When the transmitter is at rest, the parts are in the position shown, so that when the transmitter is operated to put the main battery to line the spring 6 will ride up on the inclined back of 1 the piece 5, and will slip by the top and assume such a position that on the return more-
as the shcets are accumulatel, so that the paraffine sheets may adhere closely together all round except where the projecting parts or tongues of the tin-foil come between them. This completes the construction of one unit or section of the artificial line or balancing apparatus.

To form a complete artificial line or balancing apparatus a number, more or less considerable, of such units are combined the one with the other by connecting their rireted margins in sach a way as to establish a good electric communication between them, and when the instrument is in use one end of the artificial line or balancing apparatus may be connected with the transmitter and the other to earth, while the sheets of tin-foil have a direct earth connection. This is the arrangement we prefer when the cable has a direct connection with the transmitter and with the receivinginstrument; or if, as is now rery usual, condensers are interposed at both ends betireen the cable and the instrnments, we make similar arrangements in respect to the artificial or balancing line. When the cable is worked on other systems the connections will be raried to suit the particular system in ase, as will be well understood by electricians, the object being in all coses to assimilate as closely as possible the conditions ander which the actual and the imitation cable are worked.

If re desire to make an artificial line or balancing apparatus to work with an existing telegraph-cable of which the resistance and capacity are known, we can so construct one unit as to represent both in resistance and capacity a given length of cable, and then it is onls necessary to coaple ap these units in continuous circuit to correspond to the entire length of the cable; but in other cases it is
conrenient to make the units with comparatirely high resistance as compared with the capacity, and then, by arranging the units in parallel circuit, a balancing arrangement or artificial line can be readily arranged corresponding approximately to any cable likely to be met with in practice, the resistance being dependent on the dimensious and arrangement of the plumbago paper and the capacity or power of condensation or extent of surface of the tin-foil which faces it.
These instruments are not only useful in daplex telegraphy bat also for other purposes, such as the experimental rorking of telegraphic transmitting and receiving instruments.

Having thas described the nature of the said invention and the manner of performing the same, we would have it understood that we claim-
The construction of artificial lines or accumalators haring also power of condnction by combining the following parts : first, conduct-ing-strips of paper prepared with plumbago or other condacting material, by which the current passes throngh the instrument; second, metal foil or other conducting material haring an carth connection, through which it charges and discharges itself; third, separating sheets of dielectric or insulating material, the whole arranged substantiall \(\Gamma\) asdescribed.

London, 20th December, \(187 \%\).
H. A. TAYLOR.

AIEX. MUIRHEAD.
Witnesses:
Chas. Berkley Harris, Johy Dean,
Both of 17 Gracechurcli St., London, E. C.
J. MUIRHEAD, Jr.

Condensing Resistance for Electric Telegraphs.
No. 208,665.
Patented Oct. 1, 1878.

\section*{Tham Tranemitter}

LSVEENTOR
Tohn Muirhoad. Sr. By his Attorney:s
Sont Buck Soabdim. stoptaing t Peyton

rimature of the condenser arid the telegraphzey to the other armature of the condenser. An ordinary double or reversing ley is gencrally used, so that when the one is depressed s pountive charge is communicated to the con-denser-armature attached to it, and when the other is depressed a negative charge is commanicated to it.
If the bey had been connected to the line or canlie in the usual manner, a constant or perminent current would have been produced through the cable so long as the contact was malutainel, and this carrent would only begin to dic a way when the contact with the battery wan broken or reversed. But when the condenmer is interposed in the circuit, as describeti, so soon as the corrent from the battery lias charged the condenser the carrent from the condenser is arrested, and variations in the length or the battery-contact beyond a fixed amount will produce no change in the amount of current thrown into or induced in the culbie. In this way great uniformity and regularity of signals are obtained.
At the sending end of the line it is sometimes :" isable to use a smaller condenser thau at a receiring end, and higher batterypower, ause the more sharp and sudden the imp \(\theta\) is giren the quicker will the sig. nal app at the distant end.
If th mensions of the condenser be re-duced-sis - Lalred-and the battery-power be augmented in the inverse ratio, then the shock or iupulse will be the same in amount, bat more sudden, producing a rather more rapid signal at the distant end; but the distarbing action of the earth-carrents is reduced as the dimensious of the condenser are reduced at the receiving end.
In some cases-such, for example, as where the Morse instrument is used-it is adrisable to connect together the two armatures by neans of a very large resistance, as shown in Diagram 6, so that after the condenser is charged the current through the cable shall not entirely cease. Thas the sharp, surden im. pulse of the condenser charges the cable, and would produce a dot, but not a line or dash. The weak current through the large resistance, however, maintains the current in the cable, and a dash is produced, the Morse armature being held down by this weak carrent so long as the key is held down.
\(\mathrm{O}_{\mathrm{n}}\) the key being elerated, the charged conclenser is connected to the ground, if the condenser be at the sending end; and, in dischay.ging itself the condenser produces a short, sharp current in the cable in the opposite direction, which rapidly terminates the signal at the distant end of the cable.
All cables are liable to have their insolation impaired. When this is the case, and the copper conductor is exposed to the sea-water, the copper is decomposed whenever a positive cursent is permitted to flow from the copper
into the water, forming chloride of copper, which is soluble, and difuses itself and floats away.
If the cable be kept always negative to the water, the action of the positive current flawing into the wire from the water is to preserve the wire from decomposition. To effect this I place a condenser at each end of the cable, (Diagram 7,) and also connect to the cable, through a large resistance, (or long coil of fine wire,) a battery whose positive pole is connected to the earth and negative pole to the resistance-coil. This keeps the cable always negative to the water, and jet the signals through it and the condensers are either positive or negative, at pleasure. Suppose the sig-nal-impulse to be a positive one, it weakens the negative character of the charge in the cable and also in the distant condenser, and immediately a corresponding positive signal is produced in the distant instrument.
If the signal - impulse be negative, it increases the negative charge in the cable and also in the distant condenser, and therefore produces a negative signal in the distant instrument, and thus, although positive and neg. ative impulses are produced at the distant end, the cable has been only less or more negative, but never positive, to the sea, and therefore, the conductor has been constantly under the preservative action of the negative current. Thus, then, the action of the condensers and battery has been not only to cut off the effect of the earth-currents and to expedite the transmission of signals, bat also to preserve the conductor of the cable from destructiou, if exposed to the sea-rater.
In Diagram 7 the place of the switches or commutators is shown. These have been omitted in the other diagrams to simplify them. These commutators are of the ordinary well-known form common to most systems of submarine telegraphing, and are not a part of this invention.
Having now described my invention, and the manner in which the same is or may be carried into effect, what I claim, and desire to secure by Letters Patent, is-
1. In so arranging telegraphic apparatus as to work by the variation of the increment and decrement of electric potential, and not by the direct action of the electric current itself, as and for the purposes set forth.
2. The use of an induction-coil at the receiving end of the cable, one of its wires being connected betreen the cable and the ground, and the other or secondary wire connected with the receiring-instrument, as and for the purposes set forth.
3. The use of a condenser or condensers between the receiving end of the cable and the earth, with or withont resistance-coils between the cable and the earth, as and for the purposes set forth.
4. The use of a condenser at the sending

\author{
H. A. TAYLOR \& A. MUIRHEAD. \\ Telegraphic Accumulators and Condensers. \\ No. 206.366. \\ Patented July 23, 1878.
}

Fig 2.
\[
\begin{aligned}
& \text { witNe:sses } \\
& \text { Ym a ofinute } \\
& \text { Sen. H. Orect }
\end{aligned}
\]

By their Attorneys
INTENTORS

Be Merbert. A. Taylor. Aloxander shuirinoal

ATHERFORCE```

[^0]: 70

[^1]:

